Division of Transdisciplinary Sciences

Department of Advanced Energy

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Yasushi Ono	Dr. Yasushi ONO	Our main research fields are Plasma Physics and Engineering,	Plasma Experiment,	We, plasma research groups propose annual
Laboratory	Dr. Hiroshi TANABE	especially development of fusion reactor, alternative energy sources,	Fusion,	interdisciplinary schools and workshops of plasma
		space and solar plasmas and plasma applications. The present	Spherical Tokamak (ST),	astrophysics based on bidirectional exchanges of research
		fusion research already realized fusion power output larger than the	Field-Reversed	staffs, graduate and undergraduate students. This new
		input power as an exhaustless energy without any global warming	Configuration (FRC),	approach focuses on interrelationship of laboratory plasma
		gas. Its key question is whether we can develop economic ultra-high-	Magnetic Self-	experiments, space/ astrophysical plasma observations
		beta confinement, where the beta is the plasma thermal pressure	Organization	and numerical/ theoretical plasma studies and their
		confined by the unit magnetic field: b=P/(B2/2µ0). We have been		applications based on the international and interdisciplinary
		developing a number of new ideas related with spherical torus		collaborations. Our annual school and workshop will be
		confinements: Spherical Tokamak (ST) and Field-Reversed		held in Tokyo area for graduate and undergraduate
		Configuration (FRC) using the TS-3, TS-4 and UTST devices. We are		students. Mutual visits of faculty members and graduate
		also solving keys for the magnetic confinement, especially,		and undergraduate students will be encouraged and
		reconnection of magnetic field lines that convert magnetic energy into		realized. Our initiative will provide a new interdisciplinary
		plasma kinetic energy. We developed a new laboratory experiment of		and balanced education of plasma astrophysics in both the
		magnetic reconnection using torus plasma merging and realized		undergraduate and the graduate schools. This program
		significant ion heating over 0.25keV in TS-3 and 1keV in MAST		involves laboratory experiments, space observations and
		based on UK-Japan collaboration. We are developing a new high-		numerical / theoretical studies of plasma astrophysics. Our
		magnetic field ST merging/ reconnection experiment TS-U with		activities will generate a joint consortium of departments of
		reconnecting magnetic field Brec > 0.3-0.5T, based on our scaling		advanced energy, complexity, space-astrophysical
		law of reconnection heating energy proportional to Brec2. This		science, physics and electrical engineering. We believe
		scaling law indicates that the high-B rec ST merging will heat ions to		that our annual school and workshop will provide new
		the burning plasma regime without using any additional heating		opportunities of international and interdisciplinary lectures,
		facility. We are now promoting the international world-wide		discussions and experiments to all plasma-course
		reconnection collaboration program CMSO for physics, application of		students.

	merging and reconnection and also for international and	
	interdisciplinary plasma education of young scientists among MRX	
	(Princeton U.), MST (Wisconsin Univ.) and MAST (Culham lab.) etc.	