Division of Biosciences

Department of Computational Biology and Medical Sciences

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Morishita Laboratory	Dr. Shinichi	We have been attempting to develop efficient and accurate	single-molecule sequencing,	We introduce basic ideas and algorithms for handling
	MORISHITA	algorithms for uncovering "dark matters" in genomes that are hard to	single-cell sequencing,	single-molecule sequencing data as well as how to operate
		observe using traditional second generation DNA sequencers such	centromeres, microbiome,	third generation sequencers. We also provide a couple of
		as Illumina HiSeq and Ion torrent. Typical examples of dark matters	DNA methylation	open problems in this research fields. Afterwards, summer
		are genomic sequences of long repetitive elements (LINE and LTR),		students are expected to propose and develop new ideas,
		centromeres, telomeres, homologous chromosomes, and		applications, or algorithms through brainstorming with our
		microbiome. Towards this end, we exploit full potential of our third		graduate and undergraduate students. They can use highly
		generation sequencers (PacBio Sequel, Oxford nanopore, 10X		parallel computers with thousands of CPU cores if they are
		Chromium) that realize single-molecule sequencing and are capable		interested.
		of sequencing very long DNA fragments of >10,000 base pairs.		
		Extending single-molecule sequencing, we also have been devising		
		efficient algorithms for observing DNA methylation states of dark		
		matters, for example, CpG methylation of centromeric repeats and		
		highly repetitive transposons, and 6mA in gut microbiome so as to		
		understand their biological functions.		