Division of Environmental Studies

Department of Environment Systems

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Energy and	Dr. Masaatsu AICHI	Current approaches to energy supply and consumption face	water resource,	Analysis of land subsidence caused by groundwater
Environment_		problems such as climate changes and dwindling resources. The	groundwater, land	abstraction to design monitoring system for a
Laboratory		development of key technologies for saving energy, switching to	subsidence, modeling,	groundwater management
		renewable energy resources, and appropriate waste disposal is	monitoring	Land subsidence caused by groundwater abstraction has
		required. Our goal is to perform research that will contribute to the		been a severe environmental problem in Asian coastal
		development of these technologies, especially by taking advantages		megacities. By strictly regulating the groundwater
		of the characteristics of subsurface formations. For example, we		abstraction, the land subsidence in several cities in Japan
		study ways of developing a sustainable energy system, especially		ceased today. On the other hand, the groundwater
		through hydrogeological and thermo-poro-mechanical modeling of		becomes more important water resource under changing
		geothermal heat pumps, geothermal power plants, and the geological		climate. In addition, the high groundwater pressure is
		sequestration of carbon dioxide.		harmful for the subsurface infrastructures. Then, the
		On the other hand, we also start to study how to adapt to global		possibility to restart groundwater abstraction is becoming
		warming. Combining mitigation and adaptation is an attractive choice		a matter of debate. However, it is essential to avoid the
		but it is not simple because one countermeasure possibly causes		restart of land subsidence problem.
		another environmental effects. For example, though the groundwater		Theoretically, it can be achieved by controlling the
		becomes more important water resource under changing climate, the		groundwater abstraction rate so that the effective stress
		overexploitation of groundwater possibly causes another		does not exceed the preconsolidation stress. However, it
		environmental problem such as land subsidence, sea water intrusion		is very difficult practically because of the heterogeneity in
		in coastal area, so on. We try to predict and prepare for this kind of		subsurface formations. The practical approach will be a
		domino-like propagation to other environmental problems in advance.		gradual change of ground water abstraction rate with
				appropriate monitoring to check whether the plastic
				deformation occurs or not.
				Then, the questions are what kind of and how accurate
				monitoring system is required, and how we can interpret

1		1
		the monitored data. In this program, we try to answer
		these questions by analytical or numerical modeling for
		typical hydrogeologic settings.
		The schedule is roughly planned as follows:
		1st-2nd week: Introduction to land subsidence modeling
		and monitoring system.
		3rd -4th week: Simulation and design of monitoring
		system.

Oshima Laboratory	Dr. Yoshito OSHIMA	"Supercritical fluid" refers to a fluid in which the material's critical	Supercritical Water,	Organic synthesis using supercritical water as an
		points of temperature and pressure are being exceeded. Dramatic	Reaction Engineering,	environmental technology
		physical changes are possible depending on the operating conditions	Organic Synthesis, Tunable	Supercritical water is a promising reaction medium for
		of the material. In particular, the ionic content and dielectric	Solvent, Catalysis	organic reactions because its solvent properties can be
		constant of supercritical water changes extensively based on		varied with the temperature and the pressure, and these
		temperature and/or pressure. As a result of this, it becomes		properties affect reaction kinetics and mechanisms. The
		possible to select a reaction based on one's objective: from an ionic		aim of this study is to propose a methodology which
		atmosphere suitable for inorganic reactions, to one implementing the		enables to control the reaction rate and the selectivity of
		dissolving of organics, which is equivalent to a non-polar solvent.		organic synthesis reactions only with the change of
		Taking advantage of these properties, it is expected that this new,		temperature and pressure of supercritical water.
		inexpensive, environmentally-friendly reaction medium will replace		
		conventional organic solvents. Our laboratory has many research		
		goals, covering a broad range of topics: Degradation of harmful waste		
		products using the oxidation reaction in supercritical water, organic		
		synthesis using solid catalysts, and synthesis of inorganic materials		
		such as nanoparticles and polymers. In regards to all of these fields,		
		by designing, analyzing, and controlling reactions based on a study of		
		chemical reaction rate and reaction engineering, we are advancing		
		extensive research, from fundamental research related to the		
		chemical reaction of supercritical fluids, to the cultivation of new		
		engineering application technologies.		