Division of Transdisciplinary Sciences

Department of Advanced Materials Science

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Arima-Tokunaga	Dr. Taka-hisa ARIMA	We are interested in transition-metal oxide compounds which show	Multiferroics, Magnetism,	Summer-program students can participate in crystal
<u>Laboratory</u>	Dr. Yusuke	novel physical responses like 1) control of electric polarization of	Ferroelectrics, Optical	growths of some transition-metal oxide compounds by a
	TOKUNAGA	matter with a magnetic field, 2) change in shape of matter with a	spectrum	floating zone method, flux method, or chemical vapor
		magnetic field, 3) control of magnetism of matter with an electric field,		transport method. They can perform measurements of x-
		4) control of optical property with a magnetic or electric field, and 5)		ray diffraction to characterize the obtained crystals and to
		directional birefringence/dichroism. All of these physical responses		analyze the crystal structure. They can experience
		are related to the simultaneous breaking of more than one symmetry		measurements of dielectric properties, magnetic
		operation, referred to as 'multiferroicity'. We design multiferroic		properties, and optical spectra at low temperatures as well
		materials which are expected to host such novel responses, grow		as room temperature. The student can also try the
		crystals, measure their physical properties, and investigate the origin		asymmetric crystal growth of inorganic compound.
		of the physical responses from the microscopic point of view. We		
		often utilize synchrotron and neutron facilities to reveal the symmetry		
		breaking.		
OTANI Laboratory	Dr. YoshiChika OTANI	The concept of spin current, a flow of spin angular momentum,	Spintronics, Topological	We are currently working on the following projects;
		appeared in the end of 20th century, and evolved a new spintronic	materials, Rashba interface,	Mechanisms of pure spin current generation and
		principle based on the atomic-scale angular momentum conservation	Spin momentum locking	detection
		such as spin-transfer-torque. The methods to generate, transport and		2. Magnetic phase transition by using spin current
		detect the spin currents have been well established in the following		3. Spin-to-charge current conversion in the interface of
		decade, leading the spintronics research to a new phase. Recent		topological insulator
		studies revealed interconversions among quasi-particles such as		4. Spin injection into organic materials
		electron, spin, phonon, photon and magnon etc. via spin current in a		5. Spin injection into superconductor from ferromagnet
		solid. These interconversions, called as "spin conversion", often take		
		place in the nano-scale regions at the interfaces of deferent		
		materials, and thus, have great versatility and application possibility.		

		Our fundamental researches explore new processes of the spin conversion and clarify their mechanisms. We also develop the spintronics devices to control a variety of spin conversion processes using nanofabrication technologies.		
Terashima and Ito	Dr. Kazuo TERASHIMA	99% of the visible universe is in the plasma state and today's	Plasma, Nanomaterials,	Various projects about/with plasma are available. While we
Laboratory	Dr. Tsuyohito ITO	technologies and devices such as computers, smartphones etc.	Composite materials,	can probably provide further choices according to your
		would not be a reality without plasmas and plasma processing. Our	Materials processing, Optical	interests, some examples are; (i) optical diagnostics of
		research focuses on the development of new, exotic plasmas, to	diagnostics	plasma in/on water; (ii) cryogenic plasma treatment of
		push the frontiers of materials research even further.		polymer surface; and (iii) plasma nanoparticles synthesis
		Plasma Materials Science is evolving as a major foundation for the		via laser-ablation plasma in liquids.
		development of advanced technological materials that find application		(i) Plasma generated in/on water is investigated with
		in a large variety of emerging fields such as biotechnology,		optical diagnostics. Optical emission spectroscopy with
		pharmaceutics and medicine, opto- and nanoelectronics. To address		high-temporal resolutions (~1 ns) is applied to detect
		the challenges that the fabrication of new nanomaterials demands,		various reactive species and to reveal gaseous
		the development of novel plasma techniques that allow to synthesize		temperatures. Here, we would like to understand how to
		and process materials more efficiently, economically and ecologically,		create low temperature environments with high densities of
		is necessary. This requires an interplay between different scientific		radicals (e.g. H and OH) originating from water.
		and engineering disciplines.		(ii) Effects of cryogenic temperature on plasma treatment
		We hope to attract highly motivated students including summer		of polymer surface are studied. The surface properties,
		program students who are capable to "think outside of the box" and		such as wettability, are discussed with plasma properties.
		are interested to work in an exceptionally interdisciplinary field and a		(iii) Laser-ablated plasma is formed by focusing a laser
		research group that fosters international collaboration and exchange.		light on a solid target in liquids. The evaporated target
				materials are condensed to form nanoparticles. The
				properties of the nanoparticles depend on processing
				parameters; liquid properties, laser intensity, etc. The

				purpose is to control the properties of the particles via understanding the formation mechanisms of the particles.
Nakatsuji Laboratory	Dr. Satoru NAKATSUJI	Material innovation has made various breakthroughs in basic science	New Materials, Topology,	We are planning to perform the following studies in the
	Dr. Takahiro TOMITA	and applications. Recent research has shown that magnetic materials	Magnetism, Spintronics	summer program.
	Dr. Akito SASAKI	have great potential when they have topological properties. To		(1) Probing the Fermi surface of materials through
	Dr. Tomoya HIGO	advance our understanding of novel and potentially useful electronic		quantum oscillation in their transport properties and
		and magnetic materials, our research utilizes a combination of high		magnetization in high fields up to 16 T and at low
		quality single crystal growth, thin film growth and measurements		temperatures using the dilution and Helium-3 refrigerators.
		under extreme conditions (low temperature, high magnetic field, and		Students will learn the basics of high magnetic field and
		high pressure). One of our primary aims is to search for new		low temperature measurements, and how these conditions
		materials that exhibit exotic topological properties, which is currently		can be utilized to study the structure of the Fermi surface
		a flourishing field in condensed matter physics. Recently, a large		of quantum materials.
		anomalous Hall effect, which has been seen only in ferromagnet, was		(2) Searching for room temperature energy harvesting
		discovered in an antiferromagnet at room temperature. The novel		materials through a combination of single crystal growth
		phenomena may come from topological structure called the Weyl		and electrical and thermal transport measurements.
		points in the momentum space. Such novel properties in topological		Students will learn how to grow single crystals using
		magnets can be potentially useful for spintronics application such as		various techniques and the method for measuring their
		high-density non-volatile memory devices in smartphones and		electrical and thermoelectric properties.
		computers, and energy harvesting for the internet of things.		
				Students may choose one of these for their program, and
				we will guide them accordingly.