Division of Biosciences

Department of Integrated Biosciences

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can
				participate
Signal Transduction	<u>Dr. Yoshikazu Ohya</u>	The budding yeast Saccharomyces cerevisiae is a very attractive	Budding yeast	(1) Multivariate analysis of high-dimensional morphometric
Laboratory	<u>Dr. Kuninori Suzuki</u>	model organism for studying the fundamental theories and concepts	Saccharomyces cerevisiae,	data to our understanding of the pharmacology of
		of eukaryotic cells. We applied the power of yeast genetics to	systems biology, imaging,	antifungal drugs.
		understand many aspects of yeast cells. Our current research is	cell cycle, autophagy	(2) High-Content, image-based profiling to identify drug
		mainly focused on (1) system biology based on cell imaging, (2)		target.
		function of cell wall and cell wall integrity checkpoint, and (3)		(3) Chemical genetic analysis of yeast cell cycle
		autophagy.		(4) High-dimensional quantitative phenotyping of yeast
		(1) To understand biological system as the network of logical and		essential genes
		informational process, one of the invaluable tools is genetics. Global		(5) Single-cell phenomics with morphological data to reveal
		analysis of the mutant phenotypes can provide relationships between		biodiversity and intra- species variation in yeast.
		knockout of the gene and function in the network. We developed		(6) Biochemical study of dual role of the late S-phase
		CalMorph image analysis system useful to examine high-dimensional		transcription factor Hcm1 in yeast cell cycle regulation
		quantitative phenotypes under the fluorescent microscope. This		(7) Genetic study of multiple functional domains of the
		method can be applied to identifying intracellular drug target,		yeast 1,3- β -glucan synthase subunit by quantitative
		monitoring fermentation process during culture and studying		phenotypic analysis of temperature-sensitive mutants.
		biological diversity. Our ultimate goal is to place all yeast genes and		(8) Phenotypic robustness contributed by the cell wall by
		their corresponding products on a functional signaling network based		protecting the intracellular functional network from
		on phenotyping.		environmental conditions.
		(2) The cell wall is an essential cellular component in yeast. The cell		(9) Application of image-based monitoring system for green
		wall is dynamic, because it undergoes remodeling during the cell		algal Haematococcus pluvialis (Chlorophyceae) cells
		cycle. We demonstrated that small rho type GTPase Rho1 is		during culture
		regulated by the progression of the cell cycle. We also found that		(10) Live imaging and biochemical analysis of
		there is a new cell cycle checkpoint mechanism called "cell wall		autophagosome formation and its degradation
		integrity checkpoint" which functions to control cell cycle progression		(11) Chemical genetic analysis of yeast autophagy

		in response to cell wall perturbation. We are now studying such		(12) Cell biological analysis of membrane sources of
		signaling mechanism as well as biosynthesis of the cell wall in yeast.		autophagosomes
Molecular recognition	<u>Dr. Shinji NAGATA</u>	My research interest is to find out endocrine control in feeding	Ligand-receptor recognition	To know the different ligand recognition in a single
Laboratory		behavior via the ligand and receptor recognition. Among the GPCRs,	Peptide	receptor, the summer program students first perform
		one receptor can recognize several different ligands in vivo,	Insect	calcium imaging to reveal the intracellular response against
		eventually harmonizing the biologically crucial events. We use	Knockdown	some ligands, which you chemically synthesized peptidyl
		insects, which possess the open circulating system as a model	MALDI-TOF MS	factor. The students will experience the confocal-
		animal, in order to address a receptor-sharing system. Our final		microscope, MALDI-TOF MS, RT-PCR, qRT-PCR, HPLC,
		investigation goal is to understand the comprehensive ligand-receptor		Fmoc peptide synthesis, measurement of the biological
		interaction in the body to exert biological processes.		activity in insects. To further investigate biological function,
				the program students can experience RNA interference
				targeting on those receptor gene using that crickets as
				well.