Division of Environmental Studies

Department of Environment Systems

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Energy and	Dr. Masaatsu AICHI	Current approaches to energy supply and consumption face	water resource,	Analysis of land subsidence caused by groundwater
Environment		problems such as climate changes and dwindling resources. The	groundwater, land	abstraction to design monitoring system for a
<u>Laboratory</u>		development of key technologies for saving energy, switching to	subsidence, modeling,	groundwater management
		renewable energy resources, and appropriate waste disposal is	monitoring	Land subsidence caused by groundwater abstraction has
		required. Our goal is to perform research that will contribute to the		been a severe environmental problem in Asian coastal
		development of these technologies, especially by taking advantages		megacities. By strictly regulating the groundwater
		of the characteristics of subsurface formations. For example, we		abstraction, the land subsidence in several cities in Japan
		study ways of developing a sustainable energy system, especially		ceased today. On the other hand, the groundwater
		through hydrogeological and thermo-poro-mechanical modeling of		becomes more important water resource under changing
		geothermal heat pumps, geothermal power plants, and the geological		climate. In addition, the high groundwater pressure is
		sequestration of carbon dioxide.		harmful for the subsurface infrastructures. Then, the
		On the other hand, we also start to study how to adapt to global		possibility to restart groundwater abstraction is becoming
		warming. Combining mitigation and adaptation is an attractive choice		a matter of debate. However, it is essential to avoid the
		but it is not simple because one countermeasure possibly causes		restart of land subsidence problem.
		another environmental effects. For example, though the groundwater		Theoretically, it can be achieved by controlling the
		becomes more important water resource under changing climate, the		groundwater abstraction rate so that the effective stress
		overexploitation of groundwater possibly causes another		does not exceed the preconsolidation stress. However, it
		environmental problem such as land subsidence, sea water intrusion		is very difficult practically because of the heterogeneity in
		in coastal area, so on. We try to predict and prepare for this kind of		subsurface formations. The practical approach will be a
		domino-like propagation to other environmental problems in advance.		gradual change of ground water abstraction rate with
				appropriate monitoring to check whether the plastic
				deformation occurs or not.
				Then, the questions are what kind of and how accurate
				monitoring system is required, and how we can interpret

ı	1	1	1
			the monitored data. In this program, we try to answer
			these questions by analytical or numerical modeling for
			typical hydrogeologic settings.
			The schedule is roughly planned as follows:
			1st-2nd week: Introduction to land subsidence modeling
			and monitoring system.
			3rd -4th week: Simulation and design of monitoring
			system.

1000	L	I	la	
Oshima Laboratory	Dr. Yoshito OSHIMA	"Supercritical fluid" refers to a fluid in which the material's critical	Supercritical Water,	Organic synthesis using supercritical water as an
		points of temperature and pressure are being exceeded. Dramatic	Reaction Engineering,	environmental technology
		physical changes are possible depending on the operating conditions	Organic Synthesis, Tunable	Supercritical water is a promising reaction medium for
		of the material. In particular, the ionic content and dielectric	Solvent, Catalysis	organic reactions because its solvent properties can be
		constant of supercritical water changes extensively based on		varied with the temperature and the pressure, and these
		temperature and/or pressure. As a result of this, it becomes		properties affect reaction kinetics and mechanisms. The
		possible to select a reaction based on one's objective: from an ionic		aim of this study is to propose a methodology which
		atmosphere suitable for inorganic reactions, to one implementing the		enables to control the reaction rate and the selectivity of
		dissolving of organics, which is equivalent to a non-polar solvent.		organic synthesis reactions only with the change of
		Taking advantage of these properties, it is expected that this new,		temperature and pressure of supercritical water.
		inexpensive, environmentally-friendly reaction medium will replace		
		conventional organic solvents. Our laboratory has many research		
		goals, covering a broad range of topics: Degradation of harmful waste		
		products using the oxidation reaction in supercritical water, organic		
		synthesis using solid catalysts, and synthesis of inorganic materials		
		such as nanoparticles and polymers. In regards to all of these fields,		
		by designing, analyzing, and controlling reactions based on a study of		
		chemical reaction rate and reaction engineering, we are advancing		
		extensive research, from fundamental research related to the		
		chemical reaction of supercritical fluids, to the cultivation of new		
		engineering application technologies.		

Environmental	Dr. Junichiro OTOMO	Development of environmental-benign energy devices and systems is	Chemical looping, reversible	Hydrogen production and energy storage systems are
Chemical Energy		a crucial issue in terms of energy saving and reduction of CO2	fuel cell, hydrogen, energy	key technologies in terms of future energy systems
Engineering		emission. The research in Otomo laboratory focuses on	storage, technology	combined with renewable energy. Chemical-looping (CL)
Laboratory		electrochemical reaction, catalytic reaction and ionic conduction in	assessment	and reversible fuel cell (r-FC) technologies are efficient
		solid electrolytes with the objective of integrating the elemental		energy conversion systems, and they attract attention as
		technologies into new chemical energy conversion devices and		next generation energy supply and storage systems. To
		systems such as fuel cells, hydrogen production and energy storage		advance the systems, their technology assessments are
		systems. The integration of physicochemical phenomena with		required as well as experimental studies. In this project,
		different scales is necessary to construct novel energy devices and		the assessment of environmental impact and relevant
		systems. Thus, we are investigating the physicochemical (or		experiment for CL or r-FC system will be investigated
		electrochemical) phenomena through the perspective in molecular-		based on physicochemical properties of component
		scale, mesoscopic scale and macroscopic scale to solve some		materials and reactions.
		energy problems.		

Geosphere	Dr. Tomochika	Underground geosphere environment has been extensively used to	geosphere environment,	Research topic: Analyzing natural and anthropogenic
Environment Systems	TOKUNAGA	support highly developed human society; e.g., extraction of energy	coastal groundwater, natural	impacts on coastal groundwater systems by sandbox
<u>Laboratory</u>		resources and groundwater, waste disposal, construction of tunnels	resources management	experiments and numerical simulations:
		and underground spaces. Because of these activities, environmental		About 70% of world's population live in coastal areas
		problems which affect the sustainability of our society have emerged.		where groundwater is usually the primary source of
		The target of our laboratory is to understand and predict the change		freshwater. However, the freshwater-saltwater
		of geosphere environment caused by human activities, and to		interactions in a coastal groundwater system is highly
		develop necessary engineering measures to attain sustainable use of		sensitive to variety of natural processes (e.g., tsunami
		geosphere environment. Current research topics include, studying		disasters, climate change, tidal fluctuation, long-term
		and evaluating geosphere environmental changes caused by energy		transgression and regression) and human activities (e.g.,
		resources development and proposing necessary technological		groundwater abstraction, land reclamation, subsurface
		measures for sustainable resources development, securing stable		utilization). Understating the effects of natural and
		and safe freshwater resources and development of efficient		anthropogenic forcing on the dynamics of coastal
		management schemes, and modeling long-term fluid flow and		groundwater systems can provide necessary information
		material transport processes through geosphere and its application to		for the urban design/planning, sustainable managements
		waste disposal and energy resources exploration.		of coastal resources, and protection of the coastal
				ecosystems.
				In this project, students will select one or several of
				natural/anthropogenic factors as the research target. The
				impacts of the selected factor(s) (e.g., tsunami disasters)
				on coastal groundwater systems will be studied by both
				laboratory sandbox experiments and numerical
				modelling. If necessary, field survey will be included in
				the activity. Students can obtain knowledge on the
				coastal hydrogeology, hands-on experience on building
				and operating experimental system, and skills on the
				numerical modeling approaches.