Division of Transdisciplinary Sciences

Department of Advanced Materials Science

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can
				participate
<u>Arima-Tokunaga</u>	Prof. Taka-hisa ARIMA	We are interested in transition-metal oxide compounds which show	1) Multiferroics	Summer-program students can participate in experimental
Laboratory	Assoc.Prof. Yusuke	novel physical responses like 1) control of electric polarization of	2) Magnetism	researches on magnetic ferroelectrics, which are often
	TOKUNAGA	matter with a magnetic field, 2) change in shape of matter with a	3) Ferroelectrics	referred to as multiferroics. They can grow single crystals
		magnetic field, 3) control of magnetism of matter with an electric field,	4) Crystal growth	of some transition-metal oxide compounds by a floating
		4) control of optical property with a magnetic or electric field, and 5)	5) X-ray diffraction	zone method, flux method, or chemical vapor transport
		directional birefringence/dichroism. All of these physical responses		method. They can perform measurements of x-ray
		are related to the simultaneous breaking of more than one symmetry		diffraction, dielectric constants, magnetization, and optical
		operation, referred to as 'multiferroicity'. We design multiferroic		absorption spectra at room temperature and low
		materials which are expected to host such novel responses, grow		temperatures to study the crystallographic, magnetic,
		crystals, measure their physical properties, and investigate the origin		dielectric, and optical properties of the materials.
		of the physical responses from the microscopic point of view. We		
		often utilize synchrotron and neutron facilities to reveal the symmetry		
		breaking.		
Otani- Laboratory	Prof. Yoshichika OTANI	The concept of spin current, a flow of spin angular momentum,	1) Spin currents	1. Mechanisms of pure spin current generation and
		appeared in the end of 20th century, and evolved a new spintronic	2) Spin torque	detection
		principle based on the atomic-scale angular momentum conservation	3) Spin hall effects	2. Magnetic phase transition by using spin current
		such as spin-transfer-torque. The methods to generate, transport and	4) Spin pumping	3. Spin-to-charge current conversion at the Rashba
		detect the spin currents have been well established in the following	5) Spin-Orbit interaction	interface and the surface state of topological insulator
		decade, leading the spintronics research to a new phase. Recent		4. Spin injection into quantum materials such as Weyl
		studies revealed interconversions among quasi-particles such as		semimetals
		electron, spin, phonon, photon and magnon etc. via spin current in a		
		solid. These interconversions, called as "spin conversion", often take		

	place in the nano-scale regions at the interfaces of deferent	
	materials, and thus, have great versatility and application possibility.	
	Our fundamental researches explore new processes of the spin	
	conversion and clarify their mechanisms. We also develop the	
	spintronics devices to control a variety of spin conversion processes	
	using nanofabrication technologies.	