Division of Transdisciplinary Sciences

Department of Complexity Science and Engineering

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
<u>Takase-Ejiri</u>	Prof. Yuichi TAKASE	Our group is performing experimental research on high-temperature	1) Plasma	Students can participate in experimental or computational
Laboratory		plasmas with the aim of realizing fusion energy. Plasmas are	2) Fusion	research in any of the research topics described above,
		collections of charged particles which exhibit collective behavior	3) Tokamak	under the guidance of our research staff. Examples in
		under the influence of electromagnetic fields. The greatest challenge		experimental research include plasma start-up experiments
		of fusion research is to confine a plasma with sufficiently high density		using RF waves, and measurement and characterization of
		and temperature for long enough time. In our laboratory, research is		plasma turbulence. These will involve data acquisition
		performed using the TST-2 spherical tokamak. Research topics		using existing diagnostics and analysis of the acquired
		include: development of a new method to form and maintain the		data. Diagnostic development using various techniques,
		plasma, development of heating and current drive techniques using		including low frequency electromagnetics, RF waves,
		radiofrequency (RF) waves, studies of plasma instabilities and energy		microwaves, light (infrared, visible, ultraviolet), X-rays, or
		transport processes, and development of methods to control them.		particles (electrons or ions) are also possible. Examples in
		Using a new confinement concept, the spherical tokamak is capable		computational research include modelling of RF wave
		of producing high-performance plasmas in a compact device, and		excitation, propagation and absorption, and subsequent
		may provide a way to realize an economically competitive fusion		development of the particle velocity distribution function,
		reactor. Research at our laboratory focuses primarily on plasma		leading to heating and current drive. Another possibility is
		heating and current drive by RF waves, plasma performance		to work on time-dependent plasma modelling in order to
		improvement, and development of plasma start-up scenarios without		realize the achievement of highly autonomous advanced
		the use of the central solenoid, which is indispensable for realizing a		tokamak plasma with high confinement, high stability, and
		fusion reactor based on the ST concept. In addition, various plasma		high fraction of self-driven plasma current, which is the
		diagnostics based on a variety of physical processes are being		leading candidate for realizing the fusion reactor.
		developed.		

Nose-Kohsaka	Prof. Akinao NOSE	We use the fruit fly, Drosophila, as a model to try to understand the	1) Neural circuits	Imaging neural activity and connectivity
Laboratory	Lecturer Hiroshi	operational principle of neural circuits, based on the realistic neuronal	2) Calcium Imaging	Simulation of neural circuit function
	KOHSAKA	connectivity and activity pattern. We use optogenetics, calcium	3) Connectomics	Statistical analyses of neuronal dynamics and
		imaging and electrophysiology to record and manipulate neural	4) Fruitfly	behaviors.
		activity and connectome analyses to dissect neural wiring. By	5) Animal behavior	
		systematically using these techniques, we try to elucidate the		
		functional connectivity among component neurons and information		
		processing of the neural circuits.		