Division of Environmental Studies

Department of Human and Engineered Environmental Studies

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
SASAKI Laboratory	Dr. Ken SASAKI	Our research activities are based on mechatronics and signal	Electronic circuits, Data	There are two projects relating to the two research topics
		processing. Current research topics are human body communication	transmission, Sound	described above. The first project is on human body
		(HBC) and environmental sound recognition (ESR). HBC utilizes	recognition, Signal	communication. The aim of this project is to fabricate
		human body as part of the electric signal transmission between	Processing	demonstration devices using human body communication.
		wearable devices. Data transmission is established only when the		Activities will include electronics circuit fabrication and
		devices are in contact with the user. We are interested in		micro computer programming. The second project is on
		development of practical application devices and theoretical		environmental sound recognition. The student will choose
		transmission model. The second topic ESR is a technique to		a particular sound that we hear in our daily life, sample the
		recognize non-speech sounds such as sounds that we hear in our		sound, and analyze the sound. The goal is to find
		daily life and sounds of machines and facilities. Since composition of		parameters that can be used to differentiate the chosen
		these sounds is different from that of the speech sounds, speech		sound from other environmental sounds.
		recognition methods do not work so well. Currently, we are focusing		
		on continuous sounds that have random fluctuation in their		
		spectrums, such as sound of running water, and on transient sounds		
		that we hear in our daily life such as sounds of door knock and		
		footsteps.		
Simulation of Complex	Dr. Yu CHEN	In our lab, fields of research range from social-economic, complex	Complex Systems, Agent-	In the program, a small project will be assigned to the
Systems Laboratory		fluid, to biological systems. There are three research directions: (1)	based modeling, Financial	visiting student, basically relating to model construction
		Multi-agent cooperative evolutionary games for modeling and	Markets, Soft-condensed	and computer simulations. The specific complex system for
		simulations of financial markets; (2) Discrete kinetic models for the	Matters, Cancer	study depends on student's interest. It could be a financial
		simulation of complex fluids; (3) Cellular automata and		market, a solution including colloid, or a growing tumorous
		heterogeneous stochastic agent models for the simulation of cancers.		tissue. Apart from the research activity, visits of the
				supercomputer center, scenic sites surrounding Tokyo, etc.
				are also being scheduled.

1	I	1	l .	1
Industrial Information	Dr. Kazuo HIEKATA	In modern days, distributed human agents and artifacts cooperate in	On demand bus system,	On Demand Bus is a demand responsive transit service
Systems Laboratory		highly networked information society. Our target is to study about	Social welfare service, Log	where the vehicles will transport users after they reserve
		reforming and creating structures of industries by utilizing advanced	data analysis	their seats, and the vehicle will not move when there is no
		information technologies. Our research topics include deployment of		reservation. From 2010, Tamaki town, Mie prefecture has
		wearable computers in shipbuilding and aircraft manufacturing,		introduced this service for the purpose of supporting
		developing information management platforms for product		elderly's moving. Students can develop a prototype system
		maintenance and life-cycle, designing new transportation systems		for helping elderly's life by collaborating with social welfare
		based on simulations, leveling up reliability of man-machine systems		council of Tamaki town. We can provide flexibility for the
		based on the analysis of situation awareness of operators. The		theme of projects for students. One of candidate research
		research topics include applied researches to the industry and		topics is to detect unusual behaviors of each elderly person
		diversions of basic research. One of the applied research topics is the		by using the log data of On Demand Bus system in Tamaki
		development of accuracy measurement system for large size		town. Social welfare council needs to call each elderly
		assemblies using laser scanners. Development of information system		person at a specific interval for watching their health
		for on-demand transportation and the experimental operation is the		condition. By detecting unusual behavior of each elderly
		representative research topic of diversions for the society.		person, social welfare council can call each elderly person
		For carrying out these researches, perspectives from several		efficiently.
		academic disciplines, such as engineering, information technology,		
		economics, business administration and domain specific knowledge,		
		are necessary to be integrated.		

Morita Laboratory	Dr. Takeshi MORITA	By pushing a piezoelectric material, electrical energy can be	Piezoelectric effect,	A practical experience is quite effective for starting
		generated; it means you can utilize this phenomenon for sensors or	Functional material, Energy	something new. In this project, a piezoelectric plate
		energy harvesters. On the contrary, by applying electrical field to the	harvesting device, Modeling	sandwiched with thin metal electrodes is provided to the
		piezoelectric material, mechanical strain can be obtained with		students. Flipping this plate, the electrical energy between
		piezoelectric effect, which contributes to be actuators. Without		two electrodes will be confirmed by monitoring the
		complicated structure such as an electromagnetic coil shape, a		oscilloscope. You can say that this is one of the energy
		conversion between electrical and mechanical energy is possible by		harvesting devices. Then, please modify the mechanical
		using the piezoelectric effect. Based on the high conversion efficiency		structure and the electrical circuit for the practical device
		and the large energy density, piezoelectric effect is utilized for		application. Of course we'll support you. You can use 3D
		medical acoustic devices, ultrasonic transducer, micro energy		printer and machining equipment.
		harvester and so on.		What do you want to utilize this piezoelectric plate for?
		Our group is interested in developing innovative piezoelectric		Wind force power generation? Or, do you want to get
		devices; for example, we proposes new driving principle of		energy from walking behaver by putting this material under
		piezoelectric actuator and sensor control system. At the same time,		yours shoes? Any idea is welcome, but maybe you don't
		we believe that breakthrough comes from the fundamental		like to study for boring topics. It's up to your proposal. After
		understanding of the piezoelectric effect itself. Therefore, the		making your device, a modeling for the device is conducted
		research field is not limited to the design of the transducer but is		to understand the piezoelectric effect.
		expanded to the nonlinear piezoelectric vibration, the dynamic		
		resonant frequency control and the shape-memory piezoelectric		
		actuator, which are related to the domain structure inside the		
		piezoelectric ceramics.		