Division of Transdisciplinary Sciences

Department of Advanced Materials Science

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Arima-Tokunaga	Prof. Taka-hisa ARIMA	We are interested in transition-metal oxide compounds which show	1) Multiferroics	Summer-program students can participate in experimental
Laboratory	Assoc.Prof. Yusuke	novel physical responses like 1) control of electric polarization of	2) Magnetism	researches on magnetic ferroelectrics, which are often
	TOKUNAGA	matter with a magnetic field, 2) change in shape of matter with a	3) Ferroelectrics	referred to as multiferroics. They can grow single crystals
		magnetic field, 3) control of magnetism of matter with an electric field,	4) Crystal Growth	of some transition-metal oxide compounds by a floating
		4) control of optical property with a magnetic or electric field, and 5)	5) X-ray Diffraction	zone method, flux method, or chemical vapor transport
		directional birefringence/dichroism. All of these physical responses		method. They can perform measurements of x-ray
		are related to the simultaneous breaking of more than one symmetry		diffraction, dielectric constants, magnetization, and optical
		operation, referred to as 'multiferroicity'. We design multiferroic		absorption spectra at room temperature and low
		materials which are expected to host such novel responses, grow		temperatures to study the crystallographic, magnetic,
		crystals, measure their physical properties, and investigate the origin		dielectric, and optical properties of the materials.
		of the physical responses from the microscopic point of view. We		
		often utilize synchrotron and neutron facilities to reveal the symmetry		
		breaking.		
Nakatsuji Laboratory	Prof. Satoru	Material innovation has made various breakthroughs in basic science	1) Topology	We are planning to perform the following studies in the
	<u>NAKATSUJI</u>	and applications. Recent research has shown that magnetic materials	2) New Materials	summer program.
	Dr. Takahiro TOMITA	have great potential when they have topologically nontrivial electronic	3) Condensed matter	(1) Probing the Fermi surface of materials through
	Dr. Akito SAKAI	structures. To advance our understanding of novel and potentially	4) Superconeuctor	quantum oscillation in their transport properties and
	Dr. Tomoya HIGO	useful electronic and magnetic materials, our research utilizes a	5) Spintronics	magnetization in high fields up to 16 T and at low
		combination of high quality single crystal growth, thin film growth and		temperatures using the dilution and Helium-3 refrigerators.
		measurements under extreme conditions (low temperature, high		Students will learn the basics of high magnetic field and
		magnetic field, and high pressure). One of our primary aims is to		low temperature measurements, and how these conditions
		search for new materials that exhibit exotic topological properties,		

	which are currently a flourishing field in condensed matter physics.	can be utilized to study the structure of the Fermi surface	
	Recently, a large anomalous Hall effect, which has been seen only in	of quantum materials.	
	ferromagnet, was discovered in an antiferromagnet at room	(2) Searching for room temperature energy harvesting	
	temperature in our group. This striking phenomenon indeed come	materials through a combination of single crystal growth	
	from topological structure called the Weyl points in the momentum	and electrical and thermal transport measurements.	
	space. Such novel properties in topological magnets can be	Students will learn how to grow single crystals using	
	potentially useful for spintronics application such as high-density non-	various techniques and the method for measuring their	
	volatile memory devices in smartphones and computers, and energy	electrical and thermoelectric properties.	
	harvesting for the internet of things.	Students may choose one of these for their program, and	
		we will guide them accordingly.	