Division of Environmental Studies

Department of Ocean Technology, Policy and Environment

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Toru Sato's Laboratory	Prof. Toru SATO	Our researches are aimed to form concepts of environmentally	1) Methane hydrate	Among the several methods for gas production from
		harmonizing systems, which coexist with natural environments for the	2) Flow assurance	methane hydrate (MH), depressurization is considered one
		global sustainability. For this purpose, we are developing	3) Two-phase flow	of the most promising. During this method, MH gradually
		computational models of environments using physics, chemistry, and	4) Lattice Boltzmann method	dissociates, releasing methane gas. Flow assurance
		biology, etc. Then these models are synthesized into simulation	5) Pipeline clogging	involves, among other issues, flow blockage due to hydrate
		systems in order to predict environmental impacts and construct		formation. The aim of this work is to investigate possible
		public acceptance. Our research interests are CO2 storage in the		pipe clogging due to MH formation on the bubble surface.
		deep ocean and in subsea underground, biological CO2 fixation,		The numerical method for the rising bubbles is based on
		formation and dissociation of methane hydrate, CO2 geological		the Lattice Boltzmann Method (LBM) for two-phase flows.
		storage by hydrate, development of photobioreactors for microalgae,		For this purpose, numerical simulations will be conducted
		development of multi-scale ocean model, modelling of flashing light		to examine the possible pipeline blockage due to rising
		effect of photosynthesis and the effects of CO2 on marine biota.		bubbles covered with MH with different contact angles
				between the pipe wall and the bubble, and for various pipe
				shapes.
Takagi Laboratory	Prof. Ken TAKAGI	We are developing ocean technologies which can overcome big	1) Ocean renewable energy	We are developing a floating type ocean current turbine
		issues such as depletion of natural resources, food crisis and global	2) Ocean current	system as stated above. The full scale device is planned to
		warming, and basing on the experience of development we make	3) Offshore engineering	have two big turbines whose diameter is about 40m for the
		policy recommendations. For this purpose, we are operating several		2MW system. We have already showed that our proposed
		marine projects and trying to identify key technologies in each project.		system can be stably moored by a single mooring system
		Now, we focus on the ocean current turbine system, which convert		with weathervane functions, and demonstrated by a 1/3
		ocean current energy to electricity. So far, we formed a consortium		scale model in water of off Kuchinoshima Island. However,
		with several private companies, and we developed a prototype		we still have many concerns. One of measure concerns to

i	Ī	1	1	1
		floating current turbine which was tested last year. We are expanding		commercialize the proposed system is whether the system
		the research field to conventional offshore development such as		has enough fatigue life or not in realistic ocean current
		marine drones, floating systems and riser systems. These		which has a small fluctuations. To give an answer to this
		technologies will be applied for offshore oil & gas development in		question, we have conducted an ocean current
		developing countries. Our final goal is make a proposal of ocean		measurement at sea as well as a numerical simulation of
		technology policy in comprehensive and systematic fashion.		the turbine load. We will analyze these data to reveal the
				influence of the turbulent nature of the inflow in which
				summer program students can participate. It is preferable if
				program students have knowledge of fluid dynamics and/or
				dynamics of rigid bodies. However, all student who are
				strongly wiling to study the marine renewable energies can
				participate.
Ocean Resource and	Assoc. Prof. Shinichiro	One of the key challenges of humankind in the 21st century is to	1) Ocean renewable energy	We have a variety of research topics related to ocean
Energy Laboratory	HIRABAYASHI	establish a sustainable society. Developing new types of resources	2) Floating offshore wind	renewable energy and ocean natural resources. The
		and energies that reduce global warming and negative environmental	turbines	applicant can choose what he/she wants to do after
		impact is a key issue. The ocean provides such opportunities.	3) Ocean space utilization	acceptance through discussions. Some examples we can
		Development of ocean renewable energy such as offshore wind,	4) Floating systems	offer are the design/manufacture of novel floating wind
		ocean current, thermal, wave, and solar energies is one of the areas	5) ocean natural resources	turbines, measurement and analysis of the dynamic
		of our research. In addition, research on development of platform	6) Flow-structure interaction	response of floating platform, development of effective
		technologies such as riser, floating platform, station keeping and		wave absorbing systems, design of novel energy-
		materials are investigated. Main areas of laboratory research are (1)		harvesting systems, and measurement of wave/vortex field
		ocean renewable energy, (2) mineral resources, (3) CO2 ocean		in the wake of a floating body. Experiments will be done in
		sequestration, (4) space utilization for transportation, and (5) storage		the water channel in our laboratory.
		of resources.		

I	I	ı	I	1
Applied Physical	Prof. Takuji WASEDA	The following research activities are on-going: i) waves in the ice-	1) Ocean waves	The student will engage him/herself in a self-motivated
Oceanography		covered sea; ii) freak waves under storm; iii) Stereo-imaging of ocean	2) Freak wave	research project that includes but is not restricted to the
Laboratory		waves; iv) high-resolution coastal wave, current and wind modeling	3) Marine wind	research topics listed above. The research may involve
		and observation for assisting marine sports. In the first project, we	4) Marine renewable energy	analyses of ocean satellite image, observation data and
		are developing a wave model to forecast Arctic waves in the summer	5) Stereo photogrammetry	model outputs. Those motivated can challenge in
		of 2019. Wave buoy is being developed for the October to		programming the numerical model and analysis program
		November field expedition. In the second project, numerical		as well. The research will be guided by postdoctoral
		simulation of waves under bomb cyclone is conducted to identify		researchers, graduate students, Assistant Prof. Kodaira
		dangerous seas where the freak wave occurrence is high. In the third		and Prof. Waseda. Regular meetings will be held in
		project, a field observation is conducted using stereo photogrammetry		English. The past UTSIP students undertook the
		from an ocean tower to reconstruct 3D surface wave geometry. We		following research topics: developing phase resolved
		plan to extend this method to be used on board the ship. In the		nonlinear wave model based on High-Order Spectral
		fourth project, aiming for the 2020 Olympic game, we are constructing		Method; diagnosis of East China Sea density structure;
		a data base for the sailing competition. The activities in our group		Synthetic Aperture Radar image analysis for ocean waves;
		encompasses theoretical, observational and numerical studies of		validation of model wave power considering the
		ocean waves, currents and wind to understand the basic physics.		performance of Wave Energy Converter; optimization of
		And eventually, the knowledge will be applied to support ocean		sail assisted ship navigation; freak wave occurrence near
		developments such as the Northern Sea Route, safe navigation and		Japan. The student with prior programming knowledge
		operation at sea, and marine renewable energy.		with Matlab, Python, C, Fortran 90, GrADS, etc. may have
				an advantage undertaking the project, but, the senior
				students will guide those who do not have any experience.
				The research topics can be determined upon discussion
				with Prof. Waseda prior to the visit to Japan via e-mail
				exchange. We are happy to host those who are
				interested not only in research but also in learning about
				Japanese culture.
	•	•	•	