Division of Environmental Studies

Department of Environment Systems

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Energy and	Lecturer Masaatsu AICHI	Current approaches to energy supply and consumption face	1) Water resource	Land subsidence caused by groundwater abstraction has
Environment		problems such as climate changes and dwindling resources. The	2) Groundwater	been one of the severe environmental problems in Asian
Laboratory		development of key technologies for saving energy, switching to	3) Land subsidence	coastal megacities. By strictly regulating the groundwater
		renewable energy resources, and appropriate waste disposal is	4) Modeling	abstraction, the land subsidence in several cities in Japan
		required. Our goal is to perform research that will contribute to the	5) Management	ceased today. On the other hand, the groundwater
		development of these technologies, especially by taking advantages		becomes more important water resource under changing
		of the characteristics of subsurface formations. For example, we		climate. In addition, the groundwater is considered to be
		study ways of developing a sustainable energy system, especially		an important water resource after an earthquake disaster.
		through hydrogeological and thermo-poro-mechanical modeling of		Furthermore, the high groundwater pressure is harmful
		geothermal heat pumps, geothermal power plants, and the geological		for the subsurface infrastructures. Then, the possibility to
		sequestration of carbon dioxide.		restart groundwater abstraction is becoming a matter of
		On the other hand, we also start to study how to adapt to global		debate. However, it is essential to avoid the restart of
		warming. Combining mitigation and adaptation is an attractive choice		land subsidence problem.
		but it is not simple because one countermeasure possibly causes		Theoretically, it can be achieved by controlling the
		another environmental effects. For example, though the groundwater		groundwater level so that the effective stress does not
		becomes more important water resource under changing climate, the		exceed the preconsolidation stress of subsurface
		overexploitation of groundwater possibly causes another		formations. However, it is very difficult to find practically
		environmental problem such as land subsidence, sea water intrusion		because of the heterogeneity in subsurface formations
		in coastal area, so on. We try to predict and prepare for this kind of		and the history of hydraulic head change. In this program,
		domino-like propagation to other environmental problems in advance.		we try to numerically simulate the evolution of the
				preconsolidation stress under the historical groundwater
				abstraction and find a critical groundwater level in the

	l	1	1	1
				future groundwater usage. The schedule is roughly
				planned as follows:
				1st-2nd week: Introduction to land subsidence simulation
				and excursion to the land subsidence monitoring system
				in Tokyo.
				3rd -4th week: Simulation of the past land subsidence
				and proposal for the future.
Oshima Laboratory	Prof. Yoshito OSHIMA	"Supercritical fluid" refers to a fluid in which the material's critical	1) Supercritical water	Organic synthesis using supercritical water as an
		points of temperature and pressure are being exceeded. Dramatic	2) Reaction engineering	environmental technology
		physical changes are possible depending on the operating conditions	3) Organic synthesis	Supercritical water is a promising reaction medium for
		of the material. In particular, the ionic content and dielectric	4) Tunable solvent	organic reactions because its solvent properties can be
		constant of supercritical water changes extensively based on	5) Catalysis	varied with the temperature and the pressure, and these
		temperature and/or pressure. As a result of this, it becomes		properties affect reaction kinetics and mechanisms. The
		possible to select a reaction based on one's objective: from an ionic		aim of this study is to propose a methodology which
		atmosphere suitable for inorganic reactions, to one implementing the		enables to control the reaction rate and the selectivity of
		dissolving of organics, which is equivalent to a non-polar solvent.		organic synthesis reactions only with the change of
		Taking advantage of these properties, it is expected that this new,		temperature and pressure of supercritical water.
		inexpensive, environmentally-friendly reaction medium will replace		
		conventional organic solvents. Our laboratory has many research		
		goals, covering a broad range of topics: Degradation of harmful waste		
		products using the oxidation reaction in supercritical water, organic		
		synthesis using solid catalysts, and synthesis of inorganic materials		
		such as nanoparticles and polymers. In regards to all of these fields,		
		by designing, analyzing, and controlling reactions based on a study of		
		chemical reaction rate and reaction engineering, we are advancing		
		extensive research, from fundamental research related to the		

		chemical reaction of supercritical fluids, to the cultivation of new engineering application technologies.		
<u>Environmental</u>	Assoc.Prof. Junichiro	Development of environmental-benign energy devices and systems is	1) Chemical looping	Hydrogen production and energy storage systems are
Chemical Energy	ОТОМО	a crucial issue in terms of energy saving and reduction of CO2	2) Eversible fuel cell	key technologies in terms of future energy systems
Engineering		emission. The research in Otomo laboratory focuses on	3) Hydrogen	combined with renewable energy. Chemical-looping (CL)
<u>Laboratory (Otomo</u>		electrochemical reaction, catalytic reaction and ionic conduction in	4) Energy storage	and reversible fuel cell (r-FC) technologies are efficient
<u>Laboratory)</u>		solid electrolytes with the objective of integrating the elemental	5) Technology assessment	energy conversion systems, and they attract attention as
		technologies into new chemical energy conversion devices and		next generation energy supply and storage systems. To
		systems such as fuel cells, hydrogen production and energy storage		advance the systems, their technology assessments are
		systems. The integration of physicochemical phenomena with		required as well as experimental studies. In this project,
		different scales is necessary to construct novel energy devices and		the assessment of environmental impact and relevant
		systems. Thus, we are investigating the physicochemical (or		experiment for CL or r-FC system will be investigated
		electrochemical) phenomena through the perspective in molecular-		based on physicochemical properties of component
		scale, mesoscopic scale and macroscopic scale to solve some		materials and reactions with relevant experiments of CL
		energy problems.		and r-FC.

Geosphere	Prof. Tomochika	Underground geosphere environment has been extensively used to	1) Geosphere environment	Research topic: Analyzing natural and anthropogenic
Environment Systems	TOKUNAGA	support highly developed human society; e.g., extraction of energy	2) Coastal groundwater	impacts on coastal groundwater systems by combining
Laboratory		resources and groundwater, waste disposal, construction of tunnels	3) Natural resources	laboratory experiments, field measurements, and
		and underground spaces. Because of these activities, environmental	management	numerical simulations:
		problems which affect the sustainability of our society have emerged.		About 70% of world's population live in coastal areas
		The target of our laboratory is to understand and predict the change		where groundwater is usually the primary source of
		of geosphere environment caused by human activities, and to		freshwater. However, the freshwater-saltwater
		develop necessary engineering measures to attain sustainable use of		interactions in a coastal groundwater system is highly
		geosphere environment. Current research topics include, studying		sensitive to variety of natural processes (e.g., tsunami
		and evaluating geosphere environmental changes caused by energy		disasters, climate change, tidal fluctuation, long-term
		resources development and proposing necessary technological		transgression and regression) and human activities (e.g.,
		measures for sustainable resources development, securing stable		groundwater abstraction, land reclamation, subsurface
		and safe freshwater resources and development of efficient		utilization). Understating the effects of natural and
		management schemes, and modeling long-term fluid flow and		anthropogenic forcing on the dynamics of coastal
		material transport processes through geosphere and its application to		groundwater systems can provide necessary information
		waste disposal and energy resources exploration.		for the urban design/planning, sustainable managements
				of coastal resources, and protection of the coastal
				ecosystems.
				In this project, students will select one or several of
				natural/anthropogenic factors as the research target. The
				impacts of the selected factor(s) on coastal groundwater
				systems will be studied by combining laboratory
				experiments, field measurements, and numerical
				modelling. Students can obtain knowledge on the
				coastal hydrogeology, hands-on experience on building

		and operating experimental system, and skills on the numerical modeling approaches.