Division of Transdisciplinary Sciences

Department of Advanced Energy

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Yasushi Ono	Prof. Yasushi ONO	Our main research fields are Plasma Physics and Engineering,	1) Plasma experiment	We, international plasma research groups propose annual
Laboratory	Assist.Prof. Hiroshi	especially development of fusion energy, alternative energy sources,	2) Fusion energy	interdisciplinary schools and workshops of plasma
	TANABE	space and solar plasmas and plasma applications. The present	3) Spherical Tokamak	astrophysics based on bidirectional exchanges of research
		fusion research already realized fusion power output larger than the	(ST)	staffs, graduate and undergraduate students. This new
		input power as an exhaustless energy without any global warming	4) Field-Reverse	approach focuses on interrelationship of laboratory plasma
		gas. Its key question is whether we can develop economic ultra-high-	Configuration (FRC)	experiments, space/ astrophysical plasma observations
		b confinement uaing economic high-power heating, where the beta is	5) Magnetic Self-	and numerical/ theoretical plasma studies and their
		the plasma thermal pressure P confined by the unit magnetic field:	Organization	applications based on the international and interdisciplinary
		b=P/(B2/2μ0). We have developed a number of new ideas for (1)		collaborations. Our annual school and workshop will be
		high-b confinements: Spherical Tokamak (ST) and Field-Reversed		held in Tokyo area for graduate and undergraduate
		Configuration (FRC) and (2) high-power heating: merging/		students. Mutual visits of faculty members and graduate
		reconnection heating, using the TS-3, TS-4, UTST and MAST		and undergraduate students will be encouraged and
		devices (based on UK-Japan collaboration). Since the magnetic field-		realized. Our initiative will provide a new interdisciplinary
		line reconnections converts magnetic energy into plasma kinetic/		and balanced education of plasma astrophysics in both the
		thermal energy, our TS-3 and MAST experiments documented		undergraduate and the graduate schools. This program
		significant ion heating over 0.25keV and 1keV, respectively. We		involves laboratory experiments, space observations and
		found the new scaling law of reconnection heating energy		numerical / theoretical studies of plasma astrophysics. Our
		proportional to Brec2, indicating that the high-B rec ST merging will		activities will generate a joint consortium of departments of
		heat ions to the burning plasma regime without using any additional		advanced energy, complexity, space-astrophysical
		heating facility. This fact leads us to new high-magnetic field ST		science, physics and electrical engineering. We believe
		merging/ reconnection experiments TS-U with Brec > 0.3-0.5T for ion		that our annual school and workshop will provide new
		heating >1keV. We are now organizing the international world-wide		opportunities of international and interdisciplinary lectures,

	reconnection collaboration program CMSO for physics, application of	discussions and experiments to all plasma-course
	merging and reconnection and also for international and	students.
	interdisciplinary plasma education of young scientists among MRX	
	(Princeton U.), MST (Wisconsin Univ.) and MAST (Culham lab.) etc.	
	Web:http://tanuki.t.u-tokyo.ac.jp/	