Division of Biosciences

Department of Integrated Biosciences

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Signal Transduction	Prof. Yoshikazu OYA	The budding yeast Saccharomyces cerevisiae is a very attractive	1) Budding yeast	(1) Multivariate analysis of high-dimensional morphometric
Laboratory	Assoc.Prof. Kuninori	model organism for studying the fundamental theories and concepts	saccharomyces cerevisiae	data to our understanding of the pharmacology of
	<u>SUZUKI</u>	of eukaryotic cells. We applied the power of yeast genetics to	2) Systems biology	antifungal drugs.
		understand many aspects of yeast cells. Our current research is	3) Imaging	(2) High-Content, image-based profiling to identify drug
		mainly focused on (1) system biology based on cell imaging, (2)	4) Cell cycle	target.
		function of cell wall and cell wall integrity checkpoint, and (3)	5) Autophagy	(3) Chemical genetic analysis of yeast cell cycle
		autophagy.		(4) High-dimensional quantitative phenotyping of yeast
		(1) To understand biological system as the network of logical and		essential genes
		informational process, one of the invaluable tools is genetics. Global		(5) Single-cell phenomics with morphological data to reveal
		analysis of the mutant phenotypes can provide relationships between		biodiversity and intra- species variation in yeast.
		knockout of the gene and function in the network. We developed		(6) Biochemical study of dual role of the late S-phase
		CalMorph image analysis system useful to examine high-dimensional		transcription factor Hcm1 in yeast cell cycle regulation
		quantitative phenotypes under the fluorescent microscope. This		(7) Genetic study of multiple functional domains of the
		method can be applied to identifying intracellular drug target,		yeast 1,3- β -glucan synthase subunit by quantitative
		monitoring fermentation process during culture and studying		phenotypic analysis of temperature-sensitive mutants.
		biological diversity. Our ultimate goal is to place all yeast genes and		(8) Phenotypic robustness contributed by the cell wall by
		their corresponding products on a functional signaling network based		protecting the intracellular functional network from
		on phenotyping.		environmental conditions.
		(2) The cell wall is an essential cellular component in yeast. The cell		(9) Application of image-based monitoring system for green
		wall is dynamic, because it undergoes remodeling during the cell		algal Haematococcus pluvialis (Chlorophyceae) cells
		cycle. We demonstrated that small rho type GTPase Rho1 is		during culture
		regulated by the progression of the cell cycle. We also found that		

1	1	1	I	1
		there is a new cell cycle checkpoint mechanism called "cell wall		(10) Live imaging and biochemical analysis of
		integrity checkpoint" which functions to control cell cycle progression		autophagosome formation and its degradation
		in response to cell wall perturbation. We are now studying such		(11) Chemical genetic analysis of yeast autophagy
		signaling mechanism as well as biosynthesis of the cell wall in yeast.		(12) Cell biological analysis of membrane sources of
		(3) Autophagy is a major pathway of bulk degradation of cytoplasmic		autophagosomes
		materials. In yeast, autophagy has been studied as a cellular		
		response for survival during nutrient-limited conditions. During		
		autophagy, cytoplasmic components are enclosed in a membrane		
		compartment, called an autophagosome. We are now studying the		
		mechanisms of autophagosome formation and its degradation.		
		Moreover, we have a particular interest in physiological significance		
		of autophagy.		
Kawamura Laboratory	Prof.	It is crucial to understand humans within an evolutionary framework.	1) Color vision	Reconstruction of color opsins of New World monkeys from
	Shoji KAWAMURA	By using non-model organisms to explore genetic variation and its	2) Genetic variation	fecal samples.
		ecological correlates in wild populations, it is now possible to	3) Primates	Monkeys living in Meso and South America are well known
		reevaluate the evolutionary significance of human genetic variation.	4) Evolutionary study	as having extensive color vision variation and are an
		The evolutionary diversity of sensory systems-the visual system in	5) Sensory ecology	excellent model to study evolutionary forces to maintain
		particular-is an excellent model case for addressing these questions		color vision variation in humans. The color vision variation
		because recent technical developments have enabled functional		in New World monkeys is due to allelic polymorphism of
		evaluation of the relevant genes.		the single-locus L/M opsin gene on the X chromosome. We
		Bearing these issues in mind, we pursue the following ongoing and		have conducted field research of New World monkeys
		prospective research projects using an interdisciplinary approach that		(capuchin, spider, and howler monkeys) in Costa Rica to
		spans molecular biology (population DNA sequencing, gene		study interrelation of color vision with behaviors. We have
		expression analysis, in vitro functional assays), biochemistry,		collected fecal samples from these monkeys to extract their
		population/evolutionary genetics, and behavioral ecology.		genomic DNA and analyze their L/M opsin gene. The
				purpose of this program is for students to experience fecal
L			1	

		(1) The evolutionary origin and driving force of variation in human		DNA extraction, quantification of monkey DNA from the
		color vision.		fecal DNA, isolation and genotyping of the L/M opsin gene
		(2) New World monkeys as models for understanding the		by PCR and nucleotide sequencing, reconstitution of the
		evolutionary significance of primate trichromatic color vision.		opsin photopigment in vitro, and measurement of its
		(3) Fish as a model to study the evolutionary flexibility of color vision.		absorption spectra. Through this procedure, we can
		(4) Coevolution of chemical sense and vision in primates.		evaluate how variable the L/M opsin gene and color vision
				is within and between populations and species of these
				monkeys. This is the essential information to which we
				correlate behavioral variation and from which we elucidate
				evolutionary forces behind.
Nakayama Laboratory	Assoc.Prof. Kazuhiro	Our project focused on role of genetic adaptation for local	1) Human	We are planning to assess functional and phenotypic
	NAKAYAMA	environments in shaping the ethnic variety of diseases susceptibilities	2) Genome variation	consequences of the variants under selection using
		in East Asians. We recently reported evidence for positive natural	3) Evolution	medical genetic approaches, including in silico functional
		selection events in Mongolians, one of the representative nomadic	4) Adaptation	prediction, in vitro functional assays, and the association
		group in East Asia, using high density genome wide single nucleotide		analysis with health checkup cohorts. The student can
		polymorphism (SNP) data (Nakayama K et al. Mol Biol Evol 2017		learn about DNA extraction and genotyping of focal SNPs
		34:1936-46.). SNP that showed signature of selection in Mongolians		in human DNA samples. Additionally, the student may learn
		would contribute to evolution of metabolic traits in Mongolians. We		about the principal of evolutionary genetic analyses using
		also identified the TRIB2 as a gene influencing visceral fat		focal and genome-wide SNP genotype data.
		accumulation in modern East Asians and moreover, discovered		
		signatures of positive natural selection related with adaptation to cold		
		environments in ancestors of East Asians during the last glacial		
		maximum (Nakayama K et al. Hum Genet 2013 132:201-17;		
		Nakayama K and Iwamoto S J Physiol Anthropol 2017 36:16.).		