Division of Environmental Studies

Department of Ocean Technology, Policy and Environment

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Ocean Resource and	Assoc. Prof. Shinichiro	One of the key challenges of humankind in the 21st century is to	1) Ocean renewable energy	We have a variety of research topics related to ocean
Energy Laboratory	<u>HIRABAYASHI</u>	establish a sustainable society. Developing new types of resources	2) Floating offshore wind	renewable energy and ocean natural resources. The
		and energies that reduce global warming and negative environmental	turbines	applicant can choose what he/she wants to do after
		impact is a key issue. The ocean provides such opportunities.	3) Ocean space utilization	acceptance through discussions. Some examples we can
		Development of ocean renewable energy such as offshore wind,	4) Floating systems	offer are the design/manufacture of novel floating wind
		ocean current, thermal, wave, and solar energies is one of the areas	5) ocean natural resources	turbines, measurement and analysis of the dynamic
		of our research. In addition, research on development of platform	6) Flow-structure interaction	response of floating platform, development of effective
		technologies such as riser, floating platform, station keeping and		wave absorbing systems, design of novel energy-
		materials are investigated. Main areas of laboratory research are (1)		harvesting systems, and measurement of wave/vortex field
		ocean renewable energy, (2) mineral resources, (3) CO2 ocean		in the wake of a floating body. Experiments will be done in
		sequestration, (4) space utilization for transportation, and (5) storage		the water channel in our laboratory.
		of resources.		
Applied Physical	Prof. Takuji WASEDA	The following research activities are on-going: i) waves in the ice-	1) Ocean waves	The student will engage him/herself in a self-motivated
Oceanography_		covered sea; ii) freak waves under storm; iii) Stereo-imaging of ocean	2) Freak wave	research project that includes but is not restricted to the
Laboratory		waves; iv) high-resolution coastal wave, current and wind modeling	3) Marine wind	research topics listed above. The research may involve
		and observation for assisting marine sports. In the first project, we	4) Marine renewable energy	analyses of ocean satellite image, observation data and
		are developing a wave model to forecast Arctic waves in the summer	5) Stereo photogrammetry	model outputs. Those motivated can challenge in
		of 2019. Wave buoy is being developed for the October to		programming the numerical model and analysis program
		November field expedition. In the second project, numerical		as well. The research will be guided by postdoctoral
		simulation of waves under bomb cyclone is conducted to identify		researchers, graduate students, Assistant Prof. Kodaira
		dangerous seas where the freak wave occurrence is high. In the third		and Prof. Waseda. Regular meetings will be held in
		project, a field observation is conducted using stereo photogrammetry		English. The past UTSIP students undertook the

from an ocean tower to reconstruct 3D surface wave geometry. Wefollowing replan to extend this method to be used on board the ship. In thenonlinear vefourth project, aiming for the 2020 Olympic game, we are constructingMethod; dia data base for the sailing competition. The activities in our groupSynthetic Aencompasses theoretical, observational and numerical studies ofvalidation ofocean waves, currents and wind to understand the basic physics.performanceAnd eventually, the knowledge will be applied to support oceansail assisteddevelopments such as the Northern Sea Route, safe navigation andjapan. Theoperation at sea, and marine renewable energy.with Mattatan advantation with Prof. Vertical and Vertic

following research topics: developing phase resolved nonlinear wave model based on High-Order Spectral Method; diagnosis of East China Sea density structure; Synthetic Aperture Radar image analysis for ocean waves; validation of model wave power considering the performance of Wave Energy Converter; optimization of sail assisted ship navigation; freak wave occurrence near Japan. The student with prior programming knowledge with Matlab, Python, C, Fortran 90, GrADS, etc. may have an advantage undertaking the project, but, the senior students will guide those who do not have any experience. The research topics can be determined upon discussion with Prof. Waseda prior to the visit to Japan via e-mail exchange. We are happy to host those who are interested not only in research but also in learning about Japanese culture.