Division of Biosciences

Department of Computational Biology and Medical Sciences

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can
				participate
Frith Laboratory	Prof. Martin FRITH	Our ultimate aim is to decipher the functional and historical	1) Genome	Students are encouraged to pursue their own ideas on
		information in genome sequences. We do this using statistical models	2) Evolution	analyzing genetic sequences. There are broadly two types
		(such as hidden Markov models) and computational methods (such	3) Orthology	of project: biological investigation, and method
		as enhanced suffix arrays and dynamic programming). A major	4) Probability-based	development. Examples of biological investigation: survey
		approach is to compare and align related sequences to each other, to		the evolution of gene structure by gain or loss of splice
		see how they have evolved. One recent focus is characterization of		sites, frameshifting, gene fusion or fission, etc; compare
		genome rearrangements in evolution and disease. Another long-term		the evolution of mitochondrial versus plastid genomes;
		interest is promoter sequences and DNA motifs that regulate gene		compare genome evolution to major body-form evolution
		expression. Further interests are everything "weird": malaria genomes		(e.g. snakes, whales). Examples of method development:
		(80% A+T), frameshifts (especially in microbial metagenomes),		make a sensitive probabilistic model for finding distantly-
		unexplained evolutionary conservation, trans-splicing, etc.		related DNA sequences; devise a beautiful way to visualize
		Our physical location is partly in Kashiwa, and partly in Odaiba in		complex sequence rearrangements; develop a way to
		central Tokyo.		extract specific rearrangement events from pair-wise
				alignments of long sequences (e.g. long DNA reads or
				whole genomes).
Morishita Laboratory	Prof. Shinichi	We have been attempting to develop efficient and accurate	1) Single-molecule	We introduce basic ideas and algorithms for handling
	MORISHITA	algorithms for uncovering "dark matters" in genomes that are hard to	sequencing	single-molecule sequencing data as well as how to operate
		observe using traditional second generation DNA sequencers such	2) Single-cell sequencing	third generation sequencers. We also provide a couple of
		as Illumina HiSeq and Ion torrent. Typical examples of dark matters	3) Centromeres	open problems in this research fields. Afterwards, summer
		are genomic sequences of long repetitive elements (LINE and LTR),	4) Microbiome	students are expected to propose and develop new ideas,
		centromeres, telomeres, homologous chromosomes, and	5) DNA methylation	applications, or algorithms through brainstorming with our
		microbiome. Towards this end, we exploit full potential of our third		graduate and undergraduate students. They can use highly
		generation sequencers (PacBio Sequel, Oxford nanopore, 10X		

	Chromium) that realize single-molecule sequencing and are capable	parallel computers with thousands of CPU cores if they are
	of sequencing very long DNA fragments of >10,000 base pairs.	interested.
	Extending single-molecule sequencing, we also have been devising	
	efficient algorithms for observing DNA methylation states of dark	
	matters, for example, CpG methylation of centromeric repeats and	
	highly repetitive transposons, and 6mA in gut microbiome so as to	
	understand their biological functions.	