Division of Transdisciplinary Sciences

Department of Advanced Materials Science

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can
				participate
<u>Arima-Tokunaga</u>	Prof. Taka-hisa ARIMA	We are interested in transition-metal oxide compounds which show novel	Multiferroics;	Summer-program students can participate in crystal growths of
Laboratory	Assoc. Prof. Yusuke	physical responses like 1) control of electric polarization of matter with a	Magnetism;	some transition-metal oxide compounds by a floating zone
	<u>TOKUNAGA</u>	magnetic field, 2) change in shape of matter with a magnetic field, 3)	Ferroelectrics;	method, flux method, or chemical vapor transport method. They
		control of magnetism of matter with an electric field, 4) control of optical	Crystal Growth; X-ray	can perform measurements of x-ray diffraction to characterize
		property with a magnetic or electric field, and 5) directional	Diffraction;	the obtained crystals and to analyze the crystal structure. They
		birefringence/dichroism. All of these physical responses are related to the		can experience measurements of dielectric properties, magnetic
		simultaneous breaking of more than one symmetry operation, referred to as		properties, and optical spectra at low temperatures as well as
		'multiferroicity'. We design multiferroic materials which are expected to		room temperature.
		host such novel responses, grow crystals, measure their physical		
		properties, and investigate the origin of the physical responses from the		
		microscopic point of view. We also utilize synchrotron and neutron		
		facilities to reveal the symmetry breaking.		
KIMURA (Tsuyoshi)	Prof. Tsuyoshi KIMURA	The research subject of our laboratory belongs to the field of "Materials	Physics and chemistry;	In this summer program, you will learn how to investigate multi-
Laboratory	Asst. Prof. Kenta KIMURA	Physics" which deals with the understanding of materials' properties based	Multi-functional	functional electronic materials such as multiferroics in which their
		in quantum mechanics, the exploration for state-of-arts functional materials	materials; Crystal	electronic properties respond to both magnetic and electric fields.
		based on synthetic chemistry, and the development of cutting-edge	growth; Electronic	Electronic properties of materials are strongly dominated by their
		measurement systems of materials properties. Especially, we explore multi-	properties; Magnetic	constituent elements and crystal structures. Thus, you will begin
		functional electronic materials in which various electric and magnetic	and electric fields	with the synthesis of the materials from chemicals, and have an
		properties are entangled and induce unexpected materials functionalities.		experience of crystal growth. The obtained specimens will be
		For this purpose, we design and synthesize various transition-metal		characterized by structural analyses such as an x-ray diffraction
		compounds, and carry out measurements of their electric and magnetic		measurement which reveals the crystal structures of the
		properties under various environmental conditions in terms of temperature,		specimens. Subsequently, you will characterize their magnetic,
		pressure, and electric and magnetic fields.		mechanical, and electric properties under various environmental
		"Multiferroics" are one of such functional materials and are defined as		conditions such as low temperatures and high magnetic and
		materials in which multiple order parameters such as ferromagnetic,		electric fields. By comparing the results of several compounds,
		ferroelectric, and ferroelasitic orders coexist and couple each other. We aim		

			1	
		to explore new types of mutiferroic couplings and orders such as magnetic		you will find the required conditions to achieve materials with
		monopole, magnetic toroidal, magnetic quadrupole, and chiral orders,		(multi-)functional properties.
		which lead to unconventional control of electronic properties in materials,		
		and hopefully which will be used for future electronic devices.		
Nakatsuji Laboratory	Prof. Satoru NAKATSUJI	Material innovation has made various breakthroughs in basic science and	Topology; New	We are planning to perform the following studies in the summer
	Dr. Takahiro TOMITA	applications. Recent research has shown that magnetic materials have	materials;	program.
	Dr. Akito SAKAI	great potential when they have topologically nontrivial electronic structures.	Condensed matter;	(1) Probing the Fermi surface of materials through quantum
	Dr. Tomoya HIGO	To advance our understanding of novel and potentially useful electronic	Superconductor;	oscillation in their transport properties and magnetization in high
		and magnetic materials, our research utilizes a combination of high quality	Spintronics	fields up to 16 T and at low temperatures using the dilution and
		single crystal growth, thin film growth and measurements under extreme		Helium-3 refrigerators. Students will learn the basics of high
		conditions (low temperature, high magnetic field, and high pressure). One		magnetic field and low temperature measurements, and how
		of our primary aims is to search for new materials that exhibit exotic		these conditions can be utilized to study the structure of the
		topological properties, which are currently a flourishing field in condensed		Fermi surface of quantum materials.
		matter physics. Recently, a large anomalous Hall effect, which has been		(2) Searching for room temperature energy harvesting materials
		seen only in ferromagnet, was discovered in an antiferromagnet at room		through a combination of single crystal growth and electrical and
		temperature in our group. This striking phenomenon indeed come from		thermal transport measurements. Students will learn how to grow
		topological structure called the Weyl points in the momentum space. Such		single crystals using various techniques and the method for
		novel properties in topological magnets can be potentially useful for		measuring their electrical and thermoelectric properties.
		spintronics application such as high-density non-volatile memory devices in		
		smartphones and computers, and energy harvesting for the internet of		Students may choose one of these for their program, and we will
		things.		guide them accordingly.