Division of Transdisciplinary Sciences

Department of Advanced Materials Science

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Arima-Tokunaga	Prof. Taka-hisa ARIMA	We are interested in transition-metal oxide compounds which show novel	Multiferroics;	Summer-program students can participate in crystal growths of
Laboratory	Assoc. Prof. Yusuke	physical responses like 1) control of electric polarization of matter with a	Magnetism;	some transition-metal oxide compounds by a floating zone
	<u>TOKUNAGA</u>	magnetic field, 2) change in shape of matter with a magnetic field, 3)	Ferroelectrics;	method, flux method, or chemical vapor transport method. They
		control of magnetism of matter with an electric field, 4) control of optical	Crystal Growth; X-ray	can perform measurements of x-ray diffraction to characterize
		property with a magnetic or electric field, and 5) directional	Diffraction;	the obtained crystals and to analyze the crystal structure. They
		birefringence/dichroism. All of these physical responses are related to the		can experience measurements of dielectric properties, magnetic
		simultaneous breaking of more than one symmetry operation, referred to as		properties, and optical spectra at low temperatures as well as
		'multiferroicity'. We design multiferroic materials which are expected to host		room temperature.
		such novel responses, grow crystals, measure their physical properties,		
		and investigate the origin of the physical responses from the microscopic		
		point of view. We also utilize synchrotron and neutron facilities to reveal		
		the symmetry breaking.		
Otani-Laboratory	Prof. YoshiChika	The concept of spin current, a flow of spin angular momentum, appeared in	Spin currents; spin	We are currently working on the following projects;
	<u>OTANI</u>	the end of 20th century, and led to a new spintronic principle based on the	torque; spin Hall	1. Mechanisms of pure spin current generation and detection
		atomic-scale angular momentum conservation such as spin-transfer-torque.	effects; spin pumping;	2. Magnetic phase transition by using spin current
		The methods to generate, transport and detect the spin currents have been	spin-orbit interaction	3. Spin-to-charge current conversion at the Rashba interface and
		well established over the last decade, leading the spintronics research to a		the surface state of topological insulator
		new phase. Recent studies revealed interconversions among quasi-		4. Spin injection into quantum materials such as Weyl
		particles such as electron, spin, phonon, photon and magnon etc. via spin		semimetals
		current in a solid. These interconversions, called as "spin conversion", often		
		take place in the nano-scale regions at the interfaces of deferent materials,		
		and thus, have great versatility and application possibility. Our fundamental		
		researches explore new processes of the spin conversion and clarify their		
		mechanisms. We also develop the spintronics devices to control a variety		
		of spin conversion processes using nanofabrication technologies.		