Division of Transdisciplinary Sciences

Department of Complexity Science and Engineering

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can
				participate
<u>Takase-Ejiri-Tuji</u>	Prof. Yuichi TAKASE	Our group is performing experimental research on high-temperature	plasma; fusion;	Students can participate in experimental or computational
Laboratory		plasmas with the aim of realizing fusion energy. Plasmas are collections of	tokamak	research in any of the research topics described above, under
		charged particles which exhibit collective behavior under the influence of		the guidance of our research staff. Examples in experimental
		electromagnetic fields. The greatest challenge of fusion research is to		research include plasma start-up experiments using RF waves,
		confine a plasma with sufficiently high density and temperature for long		and measurement and characterization of plasma turbulence.
		enough time. In our laboratory, research is performed using the TST-2		These will involve data acquisition using existing diagnostics and
		spherical tokamak. Research topics include: development of a new method		analysis of the acquired data. Diagnostic development using
		to form and maintain the plasma, development of heating and current drive		various techniques, including low frequency electromagnetics,
		techniques using radiofrequency (RF) waves, studies of plasma instabilities		RF waves, microwaves, light (infrared, visible, ultraviolet), X-
		and energy transport processes, and development of methods to control		rays, or particles (electrons or ions) are also possible.
		them. Using a new confinement concept, the spherical tokamak (ST) is		Examples in computational research include modelling of RF
		capable of producing high-performance plasmas in a compact device, and		wave excitation, propagation and absorption, and subsequent
		may provide a way to realize an economically competitive fusion reactor.		development of the particle velocity distribution function, leading
		Research at our laboratory focuses primarily on plasma heating and current		to heating and current drive. Another possibility is to work on
		drive by RF waves, plasma performance improvement, and development of		time-dependent plasma modelling in order to realize the
		plasma start-up scenarios without the use of the central solenoid, which is		achievement of highly autonomous advanced tokamak plasma
		indispensable for realizing a fusion reactor based on the ST concept. In		with high confinement, high stability, and high fraction of self-
		addition, various plasma diagnostics based on a variety of physical		driven plasma current, which is the leading candidate for
		processes are being developed.		realizing the fusion reactor.