Division of Biosciences

Department of Integrated Biosciences

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Signal Transduction	Prof. Yoshikazu OYA	The budding yeast Saccharomyces cerevisiae is a very attractive model	Budding yeast	(1) Live imaging and biochemical analysis of autophagosome
Laboratory	Assoc. Prof. Kuninori	organism for studying the fundamental theories and concepts of eukaryotic	Saccharomyces	formation and its degradation
	<u>SUZUKI</u>	cells. We applied the power of yeast genetics to understand many aspects	cerevisiae; systems	(2) Cell biological analysis of membrane sources of
		of yeast cells. Our current research is mainly focused on (1) system biology	biology; imaging; cell	autophagosomes
		based on cell imaging, (2) function of cell wall and cell wall integrity	cycle; autophagy	(3) Chemical genetic analysis of yeast autophagy
		checkpoint, and (3) autophagy.		(4) Multivariate analysis of high-dimensional morphometric data
		(1) To understand biological system as the network of logical and		to our understanding of the pharmacology of antifungal drugs.
		informational process, one of the invaluable tools is genetics. Global		(5) High-Content, image-based profiling to identify drug target.
		analysis of the mutant phenotypes can provide relationships between		(6) High-dimensional quantitative phenotyping of yeast
		knockout of the gene and function in the network. We developed CalMorph		haploinsufficient genes
		image analysis system useful to examine high-dimensional quantitative		(7) Single-cell phenomics with morphological data to reveal
		phenotypes under the fluorescent microscope. This method can be applied		biodiversity and intraspecies variation in yeast.
		to identifying intracellular drug target, monitoring fermentation process		(8) Genetic study of multiple functional domains of the yeast 1,3-
		during culture and studying biological diversity. Our ultimate goal is to place		β -glucan synthase subunit by quantitative phenotypic analysis of
		all yeast genes and their corresponding products on a functional signaling		temperature-sensitive mutants.
		network based on phenotyping.		(9) Phenotypic robustness contributed by the cell wall by
		(2) The cell wall is an essential cellular component in yeast. The cell wall is		protecting the intracellular functional network from environmental
		dynamic, because it undergoes remodeling during the cell cycle. We		conditions.
		demonstrated that small rho type GTPase Rho1 is regulated by the		(10) Application of image-based monitoring system for green
		progression of the cell cycle. We also found that there is a new cell cycle		algal Haematococcus pluvialis (Chlorophyceae) cells during
		checkpoint mechanism called "cell wall integrity checkpoint" which functions		culture
		to control cell cycle progression in response to cell wall perturbation. We		
		are now studying such signaling mechanism as well as biosynthesis of the		
		cell wall in yeast.		
		(3) Autophagy is a major pathway of bulk degradation of cytoplasmic		
		materials. In yeast, autophagy has been studied as a cellular response for		

survival during nutrient-limited conditions. During autophagy, cytoplasmic	
components are enclosed in a membrane compartment, called an	
autophagosome. We are now studying the mechanisms of autophagosome	
formation and its degradation. Moreover, we have a particular interest in	
physiological significance of autophagy.	