Division of Biosciences

Department of Computational Biology and Medical Sciences

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can
Laboratory	lacally			participate
Genome Informatics	Prof. Kiyoshi ASAI	The target of our research is to clarify the "meaning" of the Genome.	Biological sequences;	(1) Geometry of biological sequences based and their function.
Laboratory (Asai Lab)		Genome sequences include various types of information, not only the	RNA modification	Biological sequences (DNA, RNA and protein) are not simple
		amino-acid sequences of proteins, but their regulations, non-coding RNAs,		sequences of the symbols, but are the results of evolution
		and every history of evolution in our ancestors. We analyze		carrying hierarchical information. Alignment scores can be used
		DNA/RNA/protein sequences, their regulations, their functions, their		distance measure of the sequences, but more complicated
		structures, their interactions and their evolution using various types of		geometry should be considered to predict their function and to
		mathematical models, which usually include statistics. Our favorites are		design the optimal sequences.
		stochastic models, machine learning theory, and dynamic programming.		(2) Genome-wide analysis of modified RNAs.
		We are not the people who simply analyze biological data using software		It is known that most of the transcribed RNAs in the living cells
		tools which someone else developed. We don't want to use software black		are modified. Those post-transcriptional modifications change
		boxes for the analyses.		the structures of RNAs and their interacting targets. Predicting
		We have been developing software for the analysis of DNA/RNA		the effect of the modification is one of the major targets of epi-
		sequences, including gene finding, structural alignment of RNA sequences,		transcriptome research. We have energy parameters of modified
		and secondary structure prediction of RNA sequences, next-gen sequence		bases and the tools which analyze the changes of
		analysis.		structures/interactions of RNAs.
		Currently majority of the lab members are working on analyses of RNA		
		sequences and their structures, such as RNA-seq data analysis, RNA		
		secondary structure analysis including modified bases.		

Frith Laboratory	Prof. Martin FRITH	Our ultimate aim is to decipher the functional and historical information in	Genome; evolution;	Students are encouraged to pursue their own ideas on analyzing
		genome sequences. We do this using statistical models (such as hidden	orthology; probability-	genetic sequences. There are broadly two types of project:
		Markov models) and computational methods (such as enhanced suffix	based	biological investigation, and method development. Examples of
		arrays and dynamic programming). A major approach is to compare and		biological investigation: survey the evolution of gene structure by
		align related sequences to each other, to see how they have evolved. One		gain or loss of splice sites, frameshifting, gene fusion or fission,
		recent focus is characterization of genome rearrangements in evolution and		etc; compare the evolution of mitochondrial versus plastid
		disease. Another long-term interest is promoter sequences and DNA motifs		genomes; compare genome evolution to major body-form
		that regulate gene expression. Further interests are everything "weird":		evolution (e.g. snakes, whales). Examples of method
		malaria genomes (80% A+T), frameshifts (especially in microbial		development: make a sensitive probabilistic model for finding
		metagenomes), unexplained evolutionary conservation, trans-splicing, etc.		distantly-related DNA sequences; devise a beautiful way to
				visualize complex sequence rearrangements; develop a way to
		Our physical location is partly in Kashiwa, and partly in Odaiba in central		extract specific rearrangement events from pair-wise alignments
		Tokyo.		of long sequences (e.g. long DNA reads or whole genomes).
<u>Morishita Laboratory</u>	Prof. Shinichi	We have been attempting to develop efficient and accurate algorithms for	single-molecule	We introduce basic ideas and algorithms for handling single-
	MORISHITA	uncovering "dark matters" in genomes that are hard to observe using	sequencing; single-cell	molecule sequencing data as well as how to operate third
		traditional second generation DNA sequencers such as Illumina HiSeq and	sequencing;	generation sequencers. We also provide a couple of open
		Ion torrent. Typical examples of dark matters are genomic sequences of	centromeres;	problems in this research fields. Afterwards, summer students
		long repetitive elements (LINE and LTR), centromeres, telomeres,	microbiome; DNA	are expected to propose and develop new ideas, applications, o
		homologous chromosomes, and microbiome. Towards this end, we exploit	methylation	algorithms through brainstorming with our graduate and
		full potential of our third generation sequencers (PacBio Sequel, Oxford		undergraduate students. They can use highly parallel computers
		nanopore, 10X Chromium) that realize single-molecule sequencing and are		with thousands of CPU cores if they are interested.
		capable of sequencing very long DNA fragments of >10,000 base pairs.		
		Extending single-molecule sequencing, we also have been devising		
		efficient algorithms for observing DNA methylation states of dark matters,		
		for example, CpG methylation of centromeric repeats and highly repetitive		
		transposons, and 6mA in gut microbiome so as to understand their		
		biological functions.		