Division of Environmental Studies

Department of Ocean Technology, Policy and Environment

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can
Laboratory				participate
Ozaki Laboratory	Prof. Masahiko OZAKI,	Carbon capture and storage (CCS) is a critical component to meet the	Carbon capture and	As the concept of offshore CCS is still at its development phase,
	Asst. Prof. Ryota	ambition of the Paris agreement. To overcome Japan's geological	storage	we foresee many other innovative concepts that are worth further
	WADA	constraints, we proposed the concept of offshore CCS system using sub-	Offshore; Systems	investigation. The role of summer program student is to explore
		seabed geological formation and shuttle ship transfer. The project,	engineering;	the broad solution space of CCS concepts. Some ideas of the
		supported by the Ministry of Environment, is expected to start	Feasibility study;	concept are utilization of carbon dioxide (known as CCUS,
		demonstration project soon. Our research area covers architectural design	Ocean engineering	Carbon capture utilization and storage), or combining CCS with
		of the concept, feasibility study, design of critical offshore structures,		other offshore technologies (e.g. offshore wind, methane
		optimization of logistics system and so on. The expertise of our laboratory		hydrate). The student is free to choose from his own interest.
		is design of offshore systems with emphasis on implementation to the real		The research will be conducted with the frame work of System
		world. Our research fields are ocean engineering and data-driven		Engineering. Domain specific knowledge will be provided by the
		approach. The concept provides flexibility and scalability to CCS systems		lab members, although we encourage the student to study the
		and will accelerate the introduction of CCS over the globe for a sustainable		fundamentals of CCS. If the student has some specific interest
		future.		based on his/her background, we are happy to link that with CCS
				to come up with a new research project.
Ocean Environment	Prof. Toru SATO	Our researches are aimed to form concepts of environmentally harmonizing	Gas hydrate formation;	Methane hydrate is considered as a promising energy resource
Modelling Laboratory		systems, which coexist with natural environments for the global	Phase-field model; Gas	for the near future. To predict the gas productivity from the
		sustainability. For this purpose, we are developing computational models of	hydrate distribution;	methane hydrate in the subsea sand-sediment, it is important to
		environments using physics, chemistry, and biology, etc. Then these	Sand sediment	know absolute permeability accurately of the sediment bearing
		models are synthesized into simulation systems in order to predict		methane hydrate. Hence, the hydrate morphological distribution:
		environmental impacts and construct public acceptance. Our research		namely, what is the shape and morphology of hydrate, in the
		interests are environmental impact assessment of CO2 storage in subsea		sediment should be elucidated, because the permeability is
		underground, biological CO2 fixation, formation and dissociation modelling		strongly affected by the hydrate distribution. In this study, to
		of methane hydrate, CO2 geological storage by hydrate, development of		know where hydrate is formed in the pore of porous media, we
		multi-scale ocean model, modelling of flashing light effect of photosynthesis		propose a numerical model for estimating the microscopic
		and the effects of CO2 on marine biota.		distribution of methane hydrate in sand sediment, using the
				phase-field model, which provides the mobility of the front of the

				hydrate formation. Using this numerical model, many cases of hydrate formation and water flow will be numerically simulated within the microscopic computational domains.
Takagi Laborator	Prof. Ken TAKAGI	Takagi Lab aims at enhancing ocean technologies which could overcome	Ocean renewable	We are developing a floating type ocean current turbine system
Tanagi Laborator		big issues of mankind such as depletion of natural resources, food crisis	energy; Offshore	as stated above. The full scale device is planned to have two big
		and global warming. For this purpose, we are conducting several marine	technology; Oceanic	turbines whose diameter is about 40m for the 2MW system. We
		projects and trying to identify key technologies in each project. Now, we	engineering; Marine	have done a demonstration of a 100kW prototype model in water
		focus on the ocean current turbine system, which convert ocean current	technology	of off Kuchinoshima Island. However, we still have many
		energy to electricity. So far, we formed a consortium with several private		concerns. Major concerns to commercialize the proposed system
		companies, and developed a prototype floating current turbine which was		is whether the system is safe, reliable and low cost or not in
		tested last year. We are also interested in other offshore technologies and		realistic ocean current which contains turbulence, wave effect.
		expanding the research field such as marine drones, floating systems and		To give an answer, we have conducted an ocean current
		riser systems. These technologies are expected to be applied for offshore		measurement at sea as well as a numerical simulation of ocean
		oil & gas development in developing countries and the construction of wind		current. On the other hand, we developed a simulator of the
		farm in Japan. It is noted that our final goal is not only to develop new		current turbine system. Combining measurement data and the
		technologies but also to make proposals for ocean technology policy in		simulator, we are tackling above mentioned concerns. Summer
		comprehensive and systematic fashion based on findings in these research		program students can participate elementary researches which
		projects.		have wide spectrum from analysis of the real sea data to the
				simulation of the device controlling system. Details of the
				research theme will be decided after consulting with the
				supervisor according to the knowledge and ability of the
				candidate. However, it is preferable if program students have
				knowledge of fluid dynamics and/or dynamics of rigid bodies.
Ocean Resource and	Assoc. Prof. Shinichiro	Developing new types of resources and energies that reduce global	Ocean renewable	We have a variety of research topics related to ocean renewable
Energy Laboratory	HIRABAYASHI	warming and negative environmental impact is a key issue to establish a	energy; floating	energy and ocean natural resources. The applicant can choose
		sustainable society. The ocean provides such opportunities. Development	offshore wind turbines;	what he/she wants to do after acceptance through discussions.
		of ocean renewable energy such as offshore wind, ocean current, thermal,	ocean space utilization;	Some examples we can offer are the design/manufacture of
		wave, and solar energies is one of the areas of our research. In addition,	floating systems; ocean	novel floating wind turbines, measurement and analysis of the
		research on development of platform technologies such as riser, floating		dynamic response of floating platform, development of effective

		platform, station keeping and materials are investigated. Main areas of	natural resources; flow-	wave absorbing systems, design of novel energy-harvesting
		laboratory research are (1) ocean renewable energy, (2) development of	structure interaction	systems, and measurement of wave/vortex field in the wake of a
		ocean natural resources, (3) CO2 ocean sequestration, (4) ocean space		floating body. Experiments will be done in the water channel in
		utilization for transportation, and (5) storage of resources in the ocean.		our laboratory.
Waseda Laboratory	Prof. Takuji WASEDA	The following research activities are on-going: i) waves in the ice-covered	Ocean waves; freak	The student will engage him/herself in a self-motivated research
		sea; ii) freak waves under storm; iii) Stereo-imaging of ocean waves; iv)	wave; marine wind;	project that includes but is not restricted to the research topics
		high-resolution coastal wave, current and wind modeling and observation	marine renewable	listed above. The research may involve analyses of ocean
		for assisting marine sports. In the first project, we are extensively studying	energy; stereo	satellite image, observation data and model outputs. Those
		wave-ice interaction in the Arctic Ocean. Wave buoys were deployed in	photogrammetry	motivated can challenge in programming the numerical model
		2016 and also in 2019. Historical and future events are studied as well.		and analysis program as well. The research will be guided by
		In the second project, numerical simulations of waves under typhoon and		postdoctoral researchers, graduate students, Assistant Prof.
		bomb cyclone are conducted to identify dangerous seas where the freak		Kodaira and Prof. Waseda. Regular meetings will be held in
		wave occurrence is high. In the third project, a field observation is		English. The past UTSIP students undertook the following
		conducted using stereo photogrammetry from an ocean tower to		research topics: developing phase resolved nonlinear wave
		reconstruct 3D surface wave geometry. We plan to extend this method to		model based on High-Order Spectral Method; Synthetic Aperture
		be used on board the ship. In the fourth project, aiming for the 2020		Radar image analysis for ocean waves; assessment of wave
		Olympic game, we are constructing a data base for the sailing competition.		power considering the performance of Wave Energy Converter;
		The overall activities in our group encompasses theoretical, observational		optimization of sail assisted ship navigation; freak wave
		and numerical studies of ocean waves, currents and wind. The acquired		occurrence near Japan; Arctic cyclone climatology. The student
		knowledge will be applied to the developments of the Northern Sea Route,		with prior programming knowledge with Matlab, Python, C,
		safe navigation and operation at sea, and marine renewable energy.		Fortran 90, GrADS, etc. may have an advantage undertaking the
				project, but, the senior students will guide those who do not have
				any experience. The research topics can be determined upon
				discussion with Prof. Waseda prior to the visit to Japan via e-mail
				exchange. We are happy to host those who are interested not
				only in research but also in learning about Japanese culture.