Division of Environmental Studies

Department of Environment Systems

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Energy and	Lecturer Masaatsu	Current approaches to energy supply and consumption face problems such	water resource;	Land subsidence caused by groundwater abstraction has been
Environment	<u>AICHI</u>	as climate changes and dwindling resources. The development of key	groundwater; land	one of the severe environmental problems in Asian coastal
Laboratory		technologies for saving energy, switching to renewable energy resources,	subsidence; modeling;	megacities. By strictly regulating the groundwater abstraction,
		and appropriate waste disposal is required. Our goal is to perform research	emergency situation	the land subsidence in several cities in Japan ceased today. On
		that will contribute to the development of these technologies, especially by		the other hand, the groundwater becomes more important water
		taking advantages of the characteristics of subsurface formations. For		resource under changing climate. In addition, the groundwater is
		example, we study ways of developing a sustainable energy system,		considered to be an important water resource after an
		especially through hydrogeological and thermo-poro-mechanical modeling		earthquake or flood disaster. Furthermore, the high groundwater
		of geothermal heat pumps, geothermal power plants, and the geological		pressure is harmful for the subsurface infrastructures. Then, the
		sequestration of carbon dioxide.		possibility to restart groundwater abstraction is becoming a
		On the other hand, we also start to study how to adapt to global warming.		matter of debate. However, it is essential to avoid the restart of
		Combining mitigation and adaptation is an attractive choice but it is not		land subsidence problem.
		simple because one countermeasure possibly causes another		Theoretically, it can be achieved by controlling the groundwater
		environmental effects. For example, though the groundwater becomes		level so that the effective stress does not exceed the
		more important water resource under changing climate, the overexploitation		preconsolidation stress of subsurface formations. However, it is
		of groundwater possibly causes another environmental problem such as		very difficult to find practically because of the heterogeneity in
		land subsidence, sea water intrusion in coastal area, so on. We try to		subsurface formations and the complex history of hydraulic head
		predict and prepare for this kind of domino-like propagation to other		change in clayey layer. In this program, we try to numerically
		environmental problems in advance.		simulate the evolution of the preconsolidation stress under the
				historical groundwater abstraction and find a critical groundwater
				level in the future groundwater usage.
				The schedule is roughly planned as follows:
				1st-2nd week: Introduction to land subsidence simulation and
				excursion to the land subsidence monitoring system in Tokyo.

				3rd -4th week: Simulation of the past land subsidence and
				proposal for the future.
Akizuki - Oshima	Prof. Yoshito OSHIMA	"Supercritical fluid" refers to a fluid in which the material's critical points of	Supercritical Water,	Organic synthesis using supercritical water as an
Laboratory	Asst. Prof. Makoto	temperature and pressure are being exceeded. Dramatic physical	Reaction Engineering;	environmental technology
	AKIZUKI	changes are possible depending on the operating conditions of the	Organic Synthesis;	Supercritical water is a promising reaction medium for organic
		material. In particular, the ionic content and dielectric constant of	Tunable Solvent;	reactions because its solvent properties can be varied with the
		supercritical water changes extensively based on temperature and/or	Catalysis	temperature and the pressure, and these properties affect
		pressure. As a result of this, it becomes possible to select a reaction		reaction kinetics and mechanisms. The aim of this study is to
		based on one's objective: from an ionic atmosphere suitable for inorganic		propose a methodology which enables to control the reaction
		reactions, to one implementing the dissolving of organics, which is		rate and the selectivity of organic synthesis reactions only with
		equivalent to a non-polar solvent.		the change of temperature and pressure of supercritical water.
		Taking advantage of these properties, it is expected that this new,		
		inexpensive, environmentally-friendly reaction medium will replace		
		conventional organic solvents. Our laboratory has many research goals,		
		covering a broad range of topics: Degradation of harmful waste products		
		using the oxidation reaction in supercritical water, organic synthesis using		
		solid catalysts, and synthesis of inorganic materials such as nanoparticles		
		and polymers. In regards to all of these fields, by designing, analyzing,		
		and controlling reactions based on a study of chemical reaction rate and		
		reaction engineering, we are advancing extensive research, from		
		fundamental research related to the chemical reaction of supercritical fluids,		
		to the cultivation of new engineering application technologies.		
Environmental	Assoc. Prof. Junichiro	Development of environmental-benign energy devices and systems is a	Chemical looping,	Hydrogen production and energy storage systems are key
Chemical Energy	ОТОМО	crucial issue in terms of energy saving and reduction of CO2 emission. The	reversible fuel cell;	technologies in terms of future energy systems combined with
Engineering		research in Otomo laboratory focuses on electrochemical reaction, catalytic	hydrogen; energy	renewable energy. Chemical-looping (CL) and reversible fuel cell
Laboratory		reaction and ionic conduction in solid electrolytes with the objective of	storage; technology	(r-FC) technologies are efficient energy conversion systems, and
		integrating the elemental technologies into new chemical energy	assessment	they attract attention as next generation energy supply and
		conversion devices and systems such as fuel cells, hydrogen production		storage systems. To advance the systems, their technology
		and energy storage systems. The integration of physicochemical		assessments are required as well as experimental studies. In this
		phenomena with different scales is necessary to construct novel energy		project, the assessment of environmental impact and relevant

		3	1	1
		devices and systems. Thus, we are investigating the physicochemical (or		experiment for CL or r-FC system will be investigated based on
		electrochemical) phenomena through the perspective in molecular-scale,		physicochemical properties of component materials and
		mesoscopic scale and macroscopic scale to solve some energy problems.		reactions with relevant experiments of CL and r-FC.
Tabeta Laboratory	Prof. Shigeru TABETA	To continue enjoying the blessings of ecosystem, preserving various	coastal fisheries;	To realize sustainable fishery and sound ecosystem in coastal
		functions of ecosystem, restoring deteriorated ecosystem, and creating a	marine ecosystem	region, implementation of effective fishery management practices
		favorable new one are crucial. We aim to analyze and evaluate marine	model; fisheries	is required, as well as development of an assessment system.
		environment systems from the viewpoints of physical processes,	simulator	For example, more efficient and sustainable fishing operations
		ecosystems, and social systems considering the interaction of land, coastal		need to be determined considering both the resource and
		zones, and oceans. The life of human being cannot stand without a variety		economic conditions. We have been developed a fishery
		of ecosystem services. To continue enjoying the blessings of ecosystem,		simulator for bottom otter trawling in Japanese coastal region,
		preserving various functions of ecosystem, restoring deteriorated		which is based on two models: a fish behavioral model that
		ecosystem, and creating favorable new one are crucial. We aim to analyze		predicts the spatiotemporal variability of fish biomass and
		and evaluate the impact of human activities on ecosystem as well as to		population size, and a fishing operations model that predicts the
		develop technologies to preserve/restore/manage the ecosystem. Main		fishing activities of trawling boats. We are also collecting field
		areas of our research are the modeling and simulations of marine		data to improve the models utilizing fishing boats in the actual
		ecosystem and material cycles, the environmental impact assessment of		operations. In this project, data analysis and/or computational
		ocean and coastal developments, the restoration and management of		simulations will be conducted to assess coastal ecosystem and
		coastal environment and fisheries, and so on.		fishery management.

Geosphere	Prof. Tomochika	Underground geosphere environment has been extensively used to support	Groundwater;	The increased production of reactive nitrogen promotes the
Environment Systems	TOKUNAGA	highly developed human society; e.g., extraction of energy resources and	watershed; water and	growth of food production, and thanks to this innovation, world
<u>Laboratory</u>		groundwater, waste disposal, construction of tunnels and underground	nitrogen cycle; field	human population has increased rapidly. However, the
		spaces. Because of these activities, environmental problems which affect	survey	increase of anthropogenic usage of nitrogen leads to many
		the sustainability of our society have emerged. The target of our laboratory		environmental problems such as eutrophication, global
		is to understand and predict the change of geosphere environment caused		acidification, and global climate change. One of the main
		by human activities, and to develop necessary engineering measures to		reasons of groundwater pollution caused by nitrate-nitrogen is
		attain sustainable use of geosphere environment. Current research topics		considered to be the use of fertilizers in agriculture, and
		include, studying and evaluating geosphere environmental changes caused		groundwater quality management is becoming a serious issue in
		by energy resources development and proposing necessary technological		Japan. On the other hand, groundwater watershed does not
		measures for sustainable resources development, securing stable and safe		necessarily follow topographical watershed, thus, it is necessary
		freshwater resources and development of efficient management schemes,		to comprehensively understand how groundwater flows, and how
		and modeling long-term fluid flow and material transport processes through		nitrogen compounds behave in geosphere and hydrosphere to
		geosphere and its application to waste disposal and energy resources		manage the environment. In this study, field survey, water
		exploration		sampling, chemical and isotopic analysis, GIS-based mapping,
				and numerical modeling techniques will be applied to study
				hydrogeological system and behavior of nitrogen compounds in
				the upper reach of the Tsurumi river to provide scientific basis for
				proposing the possible management plan to conserve the water
				quality and the local environment.