Division of Environmental Studies

Department of Human and Engineered Environmental Studies

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can participate
Multi-Scenario	Prof. Hiroshi OKUDA	Using advanced computational environments such as post-peta scale	High Performance	Title: Parallel Computing and Practical Finite Element Structural
Simulation Laboratory	Lecturer Gaku	supercomputer, CPU-GPU hybrid system etc., elucidation of various	Computing; Parallel	Analysis
				Allalysis
(Okuda-Hashimoto	<u>HASHIMOTO</u>	complicated phenomena inevitable to industrial design and manufacturing	Finite Element Method;	(40 1) 5 11 11 11 11 11
<u>Lab.)</u>		and development of efficient simulation techniques and software have been	Linear Equation Solver;	(1-2 weeks) Parallel computing is learned from both sides of
		done. Specifically, following three areas are focused on:	Computer-Aided	hardware and software. Basis of Linux computer and network is
		[Area 1] Research on HPC (High-Performance Computing) middleware for	Engineering; Structural	learned and a PC-cluster (a trial parallel computer) connecting
		post-peta scale parallel computer system	Analysis	several PCs is built. Parallel computation using MPI (Message
		1-1 Common function libraries for parallel FEM (Finite Element Method)		Passing Interface) is experienced using the built PC-cluster.
		1-2 Parallel iterative and/or direct solvers suitable on multicore, hierarchical		(1-2 weeks) Introduction of continuum mechanics, structural
		and heterogeneous computer environments		analysis and FEM. This basic knowledge is necessary for doing
		1-3 Cloud CAE system for parallel FEM structural analysis		the final stage of the project below.
		[Area 2] Research on an open-source large-scale parallel FEM program		(1-2 weeks) Do parallel finite element structural analysis, which
		"FrontISTR" and its applications to industrial problems		is widely used as a simulation tool in CAE field. Besides the
		2-1 Numerical methods for nonlinear and/or coupled problems in industrial		parallel FEM by "FrontISTR", CAD modeling, mesh generation,
		design and manufacturing		setting analysis conditions and visualization of results are also
		2-2 Joint research projects with industries: Static analysis of aneurysm		learned.
		imposed by pressure, Dynamic rolling contact analysis of wheel and rail,		Participants are given work spaces and computational
		Large-deformation analysis of filled rubber, Seismic wave propagation in		environments in our laboratory. Schedule is flexible depending
		large ground area with faults, Analysis of warp at reflow soldering of print		on participants' background and the progress of works. Contents
		circuit board, Thermal stress analysis of pressure vessel, etc.		of projects are not limited to the above depending on the
		[Area 3] Research on environmental agents for the simulation of building		participants.
		low-carbon society		
		3-1 Common function middleware "MADS/SAGS" for multi agent simulation		
		3-2 Diffusion simulation of low-carbon energy technologies e.g. fuel cell		
		vehicle, building of hydrogen society		
		3-3 Hybrid methods of CFD (Computational Fluid Analysis) and SOM (Self		

		Organizing Map) knowledge base for controlling temperature of molten		
		steel		
Human, Energy and	Assoc. Prof. Chaobin	Our research activity aims to create energy efficient technology to reduce	Solar energy; micro	Each summer program student can participate one or two
Environment	DANG	environmental impacts and to maintain a comfortable lifestyle. With this in	channel heat transfer;	research projects listed below:
Laboratory		mind, we cover a broad spectrum of research topics from fundamental	heat mass transfer;	(1) Concentration photovoltaic and solar thermal/cooling system
		studies of thermal management to development of high efficient energy	heat pump; desiccant	Develop a cogeneration system combing the high concentration
		conversion systems. Our main research topics include (1) cogeneration use	air-conditioning	multi-junction solar cell and thermal driving absorption system.
		of photovoltaic and solar thermal/cooling systems, (2) hybrid desiccant		Student can participate the design and test of high heat flux
		dehumidification and air conditioning systems, (3) non-fluorocarbon and low		cooling technology, system analysis of the dynamic
		GWP refrigerant heat pumps including safety issue and performance		characteristics and overall energy utilization efficiency.
		evaluation, (4) novel membrane type compact absorption system driven by		(2) Novel membrane type compact absorption system driven by
		automobile engine exhaust heat, (5) micro channel heat transfer technology		automobile engine exhaust heat
		and micro-heat exchangers.		Develop a compact absorption system for the automotive cabin
				air conditioning by utilizing exhaust heat of engine. Student can
				participate the design and test of novel membrane type absorber
				and generator, system analysis of the dynamic characteristics
				and overall energy utilization efficiency.
				(3) Micro channel heat transfer technology
				Study the flow and heat transfer characteristics of micro scale
				flow boiling and condensation with the focus on the heat transfer
				enhancement to deal with high heat flux cooling due to the effect
				of micro scale, surface treatment and 3D structure design.
				(4) Ejector cooling system
				Develop and test a thermal driving ejector cooling system.
				Student can participate the laser measurement and numerical
				simulation of supercritical flow regime inside the ejector and the
				analysis of the dynamic characteristics of ejector system.

Simulation of Complex	Prof. Yu CHEN	In our lab, fields of research range from social-economic, complex fluid, to	Complex Systems;	In the program, a small project will be assigned to the visiting
	TIOI. TU CHEN		, ,	
Systems Laboratory		biological systems. There are three research directions: (1) Multi-agent	Agent-based modeling;	student, basically relating to model construction and computer
		cooperative evolutionary games for modeling and simulations of financial	Financial Markets; Soft-	simulations. The specific complex system for study depends on
		markets; (2) Discrete kinetic models for the simulation of complex fluids; (3)	condensed Matters;	student's interest. It could be a financial market, a solution
		Cellular automata and heterogeneous stochastic agent models for the	Cancer	including colloid, or a growing tumorous tissue. Apart from the
		simulation of aging and cancers.		research activity, visits of related labs in other university, and/or
				scenic sites surrounding Tokyo, etc. are also being scheduled.
Industrial Information	Assoc. Prof. Kazuo	In modern days, distributed human agents and artifacts cooperate in highly	Systems approach; On	Students will study several methods for systems approach. The
Systems Laboratory	<u>HIEKATA</u>	networked information society. Our target is to study about reforming and	demand bus; Log data	methods include stakeholder analysis, requirement definition,
		creating structures of industries by utilizing advanced information	analysis	mission and architecture analysis and performance forecast for
		technologies. Our research topics include deployment of wearable		large complex system of systems. For example, identification
		computers in shipbuilding and aircraft manufacturing, developing		and framing of a problem in complex production lines in
		information management platforms for product maintenance and life-cycle,		manufacturing firms, current transportation systems or society
		designing new transportation systems based on simulations, leveling up		are the potential topics. Model based systems design for solving
		reliability of man-machine systems based on the analysis of situation		these problems is in the scope, so students may work on
		awareness of operators. The research topics include applied researches to		development of industrial/business process simulators as a part
		the industry and diversions of basic research. One of the applied research		of their project. One example is on-demand transportation
		topics is the development of accuracy measurement system for large size		system, which is a demand responsive transit service where the
		assemblies using laser scanners. Development of information system for		vehicles will transport users after they reserve their seats, and
		on-demand transportation and the experimental operation is the		the vehicle will not move when there is no reservation. One of
		representative research topic of diversions for the society.		candidate research topics is to detect unusual behaviors of each
		For carrying out these researches, perspectives from several academic		elderly person by using the log data of On Demand Bus system
		disciplines, such as engineering, information technology, economics,		in some fields. Social welfare council needs to call each elderly
		business administration and domain specific knowledge, are necessary to		person at a specific interval for watching their health condition.
		be integrated.		By detecting unusual behavior of each elderly person, social
				welfare council can call each elderly person efficiently.
				(https://is.edu.k.u-tokyo.ac.jp/)

Morita Laboratory	Prof. Takeshi MORITA	By applying pressure to piezoelectric material, electrical energy can be	Piezoelectric effect,	A practical experience is quite effective for starting something
		generated; it means you can utilize this phenomenon for sensors or energy	Functional material,	new. In this project, a piezoelectric plate sandwiched with thin
		harvesters. On the contrary, by applying electrical field to the piezoelectric	Energy harvesting	metal electrodes is provided to the students. Flipping this plate,
		material, mechanical strain can be obtained with piezoelectric effect, which	device, Modeling	the electrical energy between two electrodes will be confirmed by
		contributes to be actuators. Without complicated structure such as an		monitoring the oscilloscope. You can say that this is one of the
		electromagnetic coil shape, a conversion between electrical and		energy harvesting devices. Then, please modify the mechanical
		mechanical energy is possible by using the piezoelectric effect. Based on		structure and the electrical circuit for the practical device
		the high conversion efficiency and the large energy density, piezoelectric		application. Of course we'll support you. You can use 3D printer
		effect is utilized for medical acoustic devices, ultrasonic transducer, micro		and machining equipment.
		energy harvester and so on.		What do you want to utilize this piezoelectric plate for? Wind
		Our group is interested in developing innovative piezoelectric devices; for		force power generation? Or, do you want to get energy from
		example, we propose new driving principle of piezoelectric actuator and		walking behaver by putting this material under yours shoes? Any
		sensor control system. At the same time, we believe that breakthrough		idea is welcome, but maybe you don't like to study for boring
		comes from the fundamental understanding of the piezoelectric effect itself.		topics. It's up to your proposal. After making your device, a
		Therefore, the research field is not limited to the design of the transducer		modeling for the device is conducted to understand the
		but is expanded to the nonlinear piezoelectric vibration, the dynamic		piezoelectric effect.
		resonant frequency control and the shape-memory piezoelectric actuator,		
		which are related to the domain structure inside the piezoelectric ceramics.		