Division of Transdisciplinary Sciences

Department of Advanced Materials Science

Nakatsuji Laboratory	Prof. Satoru NAKATSUJI	Material innovation has made various breakthroughs in basic science and	Topology; New	We are planning to perform the following studies in the summer
	Dr. Takahiro TOMITA	applications. Recent research has shown that magnetic materials have	materials;	program.
	Dr. Akito SAKAI	great potential when they have topologically nontrivial electronic structures.	Condensed matter;	(1) Probing the Fermi surface of materials through quantum
	Dr. Tomoya HIGO	To advance our understanding of novel and potentially useful electronic	Superconductor;	oscillation in their transport properties and magnetization in high
		and magnetic materials, our research utilizes a combination of high quality	Spintronics	fields up to 16 T and at low temperatures using the dilution and
		single crystal growth, thin film growth and measurements under extreme		Helium-3 refrigerators. Students will learn the basics of high
		conditions (low temperature, high magnetic field, and high pressure). One		magnetic field and low temperature measurements, and how
		of our primary aims is to search for new materials that exhibit exotic		these conditions can be utilized to study the structure of the
		topological properties, which are currently a flourishing field in condensed		Fermi surface of quantum materials.
		matter physics. Recently, a large anomalous Hall effect, which has been		(2) Searching for room temperature energy harvesting materials
		seen only in ferromagnet, was discovered in an antiferromagnet at room		through a combination of single crystal growth and electrical and
		temperature in our group. This striking phenomenon indeed come from		thermal transport measurements. Students will learn how to grow
		topological structure called the Weyl points in the momentum space. Such		single crystals using various techniques and the method for
		novel properties in topological magnets can be potentially useful for		measuring their electrical and thermoelectric properties.
		spintronics application such as high-density non-volatile memory devices in		
		smartphones and computers, and energy harvesting for the internet of		Students may choose one of these for their program, and we will
		things.		guide them accordingly.