Division of Environmental Studies

Department of Environment Systems

Laboratory	Faculty	Introduction of research activities and laboratory	Key words	Projects or activities summer program students can
				participate
Energy and	Lecturer Masaatsu	Current approaches to energy supply and consumption face problems such	water resource;	Land subsidence caused by groundwater abstraction has been one of
Environment	AICHI	as climate changes and dwindling resources. The development of key	groundwater; land	the severe environmental problems in Asian coastal megacities. By
Laboratory		technologies for saving energy, switching to renewable energy resources,	subsidence; modeling;	strictly regulating the groundwater abstraction, the land subsidence in
		and appropriate waste disposal is required. Our goal is to perform research	emergency situation	several cities in Japan ceased today. On the other hand, the
		that will contribute to the development of these technologies, especially by		groundwater becomes more important water resource under
		taking advantages of the characteristics of subsurface formations. For		changing climate. In addition, the groundwater is considered to be an
		example, we study ways of developing a sustainable energy system,		important water resource after an earthquake or flood disaster.
		especially through hydrogeological and thermo-poro-mechanical modeling		Furthermore, the high groundwater pressure is harmful for the
		of geothermal heat pumps, geothermal power plants, and the geological		subsurface infrastructures. Then, the possibility to restart
		sequestration of carbon dioxide.		groundwater abstraction is becoming a matter of debate. However, it
		On the other hand, we also start to study how to adapt to global warming.		is essential to avoid the restart of land subsidence problem.
		Combining mitigation and adaptation is an attractive choice but it is not		Theoretically, it can be achieved by controlling the groundwater level
		simple because one countermeasure possibly causes another		so that the effective stress does not exceed the preconsolidation
		environmental effects. For example, though the groundwater becomes more		stress of subsurface formations. However, it is very difficult to find
		important water resource under changing climate, the overexploitation of		practically because of the heterogeneity in subsurface formations and
		groundwater possibly causes another environmental problem such as land		the complex history of hydraulic head change in clayey layer. In this
		subsidence, sea water intrusion in coastal area, so on. We try to predict and		program, we try to numerically simulate the evolution of the
		prepare for this kind of domino-like propagation to other environmental		preconsolidation stress under the historical groundwater abstraction
		problems in advance.		and find a critical groundwater level in the future groundwater usage.
				The schedule is roughly planned as follows:
				1st-2nd week: Introduction to land subsidence simulation and
				excursion to the land subsidence monitoring system in Tokyo.
				3rd -4th week: Simulation of the past land subsidence and proposal
				for the future.